Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 5
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Dijon, Jean 2017. Carbon Nanotubes for Interconnects.


    Liyanage, Luckshitha Suriyasena Cott, Daire J Delabie, Annelies Elshocht, Sven Van Bao, Zhenan and Philip Wong, H-S 2013. Atomic layer deposition of high-kdielectrics on single-walled carbon nanotubes: a Raman study. Nanotechnology, Vol. 24, Issue. 24, p. 245703.


    van der Veen, Marleen H. Vereecke, Bart Huyghebaert, Cedric Cott, Daire J. Sugiura, Masahito Kashiwagi, Yusaku Teugels, Lieve Caluwaerts, Rudy Chiodarelli, Nicolò Vereecken, Philippe M. Beyer, Gerald P. Heyns, Marc M. De Gendt, Stefan and Tökei, Zsolt 2013. Electrical characterization of CNT contacts with Cu Damascene top contact. Microelectronic Engineering, Vol. 106, p. 106.


    Vereecke, Bart Veen, Marleen H. van der Sugiura, Masahito Kashiwagi, Yusaku Ke, Xiaoxing Cott, Daire J. Hantschel, Thomas Huyghebaert, Cedric and Tökei, Zsolt 2013. Wafer-Level Electrical Evaluation of Vertical Carbon Nanotube Bundles as a Function of Growth Temperature. Japanese Journal of Applied Physics, Vol. 52, Issue. 4S, p. 04CN02.


    Chiodarelli, Nicolo van der Veen, Marleen H. Vereecke, Bart Cott, Daire J. Groeseneken, Guido Vereecken, Philippe M. Huyghebaert, Cedric and Tokei, Zsolt 2011. 2011 IEEE International Interconnect Technology Conference. p. 1.

    ×
  • MRS Proceedings, Volume 1283
  • January 2011, mrsf10-1283-b10-10

ALD of Al2O3 for Carbon Nanotube vertical interconnect and its impact on the electrical properties

Abstract
ABSTRACT

Because of their superior electronic properties and bottom-up growth mode, Carbon Nanotubes (CNT) may offer a valid alternative for high aspect ratio vertical interconnects in future generations of microchips. For being successful, though, CNT based interconnects must reach sufficiently low values of resistance to become competitive with current W or Cu based technologies. This essentially means that CMOS compatible processes are needed to produce dense CNT shells of extremely high quality with almost ideal contacts. Moreover, their electrical properties must be preserved at every process step in the integration of CNT into vertical interconnect structures. In this work this latter aspect is analyzed by studying the changes in the electrical characteristics when encapsulating CNT into different oxides. Oxide encapsulation is often exploited to hold the CNT in place and to avoid snapping during a polishing step. On the other hand, oxide encapsulation can influence the properties of the grown CNT which are directly exposed to possibly harmful oxidative conditions. Two different deposition techniques and oxides were evaluated: Chemical Vapor Deposition (CVD) of SiO2 (reference) and Atomic Layer Deposition (ALD) of Al2O3 in less aggressive oxidizing conditions. The two processes were transferred to CNT interconnect test structures on 200mm wafers and electrically benchmarked. The CNT resistance was measured in function of the CNT length which allows the extraction and individual distinction of the resistive contributions of the CNT and the contacts. It is shown that the encapsulating SiO2 deposited by CVD degrades the resistance of CNT by altering their quality. Directions for future improvements have been identified and discussed.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]M. S. Purewal , B. H. Hong , A. Ravi , B. Chandra , J. Hone , and P. Kim , Scaling of Resistance and Electron Mean Free Path of Single-Walled Carbon Nanotubes, Phys. Rev. Lett. Vol. 98, (2007) pp. 186808

[2]B. Q. Wei , R. Vajtai , and P. M. Ajayan , Reliability and current carrying capacity of carbon nanotubes, Appl. Phys. Lett. Vol. 79 No. 8 (2001) pp. 1172

[3]P. Kim , L. Shi , A. Majumdar , and P. L. McEuen , Thermal Transport Measurements of Individual Multiwalled Nanotubes, Phys. Rev. Lett. Vol. 87 No. 21, (2001) pp. 215502

[4]N. Chiodarelli , K. Kellens , D. J. Cott , N. Peys , K. Arstila , M. Heyns , S. De Gendt , G. Groeseneken , and P. M. Vereecken , Integration of Vertical Carbon Nanotube Bundles for Interconnects, Journal of The Electrochemical Society, Vol. 157 No. 10, (2010) pp. K211

[6]N. Chiodarelli , S. Masahito , Y. Kashiwagi , Y. Li , K. Arstila , O. Richard , D. J. Cott , M. Heyns , S. De Gendt , G. Groeseneken and P. M. Vereecken , Measuring the Electrical Resistivity and Contact Resistance of Vertical Carbon Nanotube Bundles for Application as Interconnects, Nanotechnology, Vol. 22 No. 8 (2011) pp. 085302

[7]Damon B. Farmer and Roy G. Gordon , Atomic Layer Deposition on suspended Single-Walled Carbon Nanotubes via Gas-Phase Noncovalent Functionalization, Nanoletters Vol. 6, No. 4 (2006) pp. 699703

[8]J.S. Lee , B. Min , K. Cho , S. Kim , J. Park , Y.T. Lee , N.S. Kim , M.S. Lee , S.O. Park , J.T. Moon , Al2O3nanotubes and nanorods fabricated by coating and filling of carbon nanotubes with atomic-layer deposition, Journal of Crystal Growth Vol. 254 (2003) pp. 443

[9]P. Poncharal , C. Berger , Y. Ti , Z. L. Wang , and W. A. de Heer , Room Temperature Ballistic Conduction in Carbon Nanotubes, J. Phys. Chem. B Vol. 106 (2002), pp. 12104

[10]J. H. Hafner , M. J. Bronikowski , B. R. Azamian , P. Nikolaev , A. G. Rinzler , D. T. Colbert , K. A. Smith , R. E. Smalley , Catalytic growth of single-wall carbon nanotubes from metal particles, Chem. Phys. Lett. Vol. 296 (1998) pp. 195

[11]J. Kong , H. T. Soh , A. M. Cassell , C. F. Quate and H. Dai , Synthesis of individual single walled carbon nanotubes on patterned silicon wafers, Nature Vol. 395 (1998) pp. 878

[12]B. Lee , S.-Y. Park , H.-C. Kim , K. J. Cho , E. M. Vogel , M. J. Kim , R. M. Wallace , and J. Kim , conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics, Appl. Phys. Lett. 92 (2008) pp. 203102

[13]D. B. Mawhinney , V. Naumenko , A. Kuznetsova , J. T. Yates , J. Liu and R. E. Smalley , Infrared Spectral Evidence for the Etching of Carbon Nanotubes: Ozone Oxidation at 298 K, J. Am. Chem. Soc. Vol. 122 (2000) pp. 2383

[14]N. Leconte , J. Moser , P. Ordejon , H. Tao , A. Lherbier , A. Bachtold , F. Alsina , C. M. S. Torres , J. Charlier , and S. Roche , Damaging Graphene with Ozone Treatment: A Chemically Tunable Metal_Insulator Transition, ACS Nano, Vol. 4 No. 7 (2010) pp. 4033

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: