Skip to main content Accessibility help

All-Carbon Composite for Photovoltaics

  • Alvin T.L. Tan (a1), Vincent C. Tung (a1), Jaemyung Kim (a1), Jen-Hsien Huang (a1), Ian Tevis (a1), Chih-Wei Chu (a1), Samuel I. Stupp (a1) and Jiaxing Huang (a1)...


Graphitic nanomaterials such as graphene, carbon nanotubes (CNT), and C60 fullerenes are promising materials for energy applications because of their extraordinary electrical and optical properties. However, graphitic materials are not readily dispersible in water. Strategies to fabricate all-carbon nanocomposites typically involve covalent linking or surface functionalization, which breaks the conjugated electronic networks or contaminates functional carbon surfaces. Here, we demonstrate a facile surfactant-free strategy to create such all-carbon composites. Fullerenes, unfunctionalized single walled carbon nanotubes, and graphene oxide sheets can be conveniently co-assembled in water, resulting in a stable colloidal dispersion amenable to thin film processing. The thin film composite can be made conductive by mild thermal heating. Photovoltaic devices fabricated using the all-carbon composite as the active layer demonstrated an on-off ratio of nearly 106, an open circuit voltage of 0.59V, and a power conversion efficiency of 0.21%. This photoconductive and photovoltaic response is unprecedented among all-carbon based materials. Therefore, this surfactant-free, aqueous based approach to making all-carbon composites is promising for applications in optoelectronic devices.



Hide All
(1) Yamamoto, Y. Fukushima, T. Suna, Y. Ishii, N. Saeki, A. Seki, S. Tagawa, S. Taniguchi, M. Kawai, T.; Aida, T. Science 2006, 314, 17611764.
(2) Nasibulin, A. G. Pikhitsa, P. V. Jiang, H. Brown, D. P. Krasheninnikov, A. V. Anisimov, A. S. Queipo, P. Moisala, A. Gonzalez, D. Lientschnig, G. Hassanien, A. Shandakov, S. D. Lolli, G. Resasco, D. E. Choi, M. Tomanek, D.; Kauppinen, E. I. Nat Nano 2007, 2, 156161.
(3) Umeyama, T. Tezuka, N. Fujita, M. Hayashi, S. Kadota, N. Matano, Y.; Imahori, H. Chem. Eur. J. 2008, 14, 48754885.
(4) Kalita, G. Adhikari, S. Aryal, H. R. Umeno, M. Afre, R. Soga, T.; Sharon, M. Appl. Phys. Lett. 2008, 92, 063508.
(5) Yamamoto, Y. Zhang, G. Jin, W. Fukushima, T. Ishii, N. Saeki, A. Seki, S. Tagawa, S. Minari, T. Tsukagoshi, K.; Aida, T. Proceedings of the National Academy of Sciences 2009, 106, 2105121056.
(6) Umeyama, T. Tezuka, N. Seki, S. Matano, Y. Nishi, M. Hirao, K. Lehtivuori, H. Tkachenko, N. V. Lemmetyinen, H. Nakao, Y. Sakaki, S.; Imahori, H. Adv. Mater. 2010, 22, 17671770.
(7) Zhang, X. Huang, Y. Wang, Y. Ma, Y. Liu, Z.; Chen, Y. Carbon 2009, 47, 334337.
(8) Zhu, H. Wei, J. Wang, K.; Wu, D. Solar Energy Materials and Solar Cells 2009, 93, 14611470.
(9) Sariciftci, N. S. Smilowitz, L. Heeger, A. J.; Wudl, F. Science 1992, 258, 14741476.
(10) Tans, S. J. Verschueren, A. R. M.; Dekker, C. Nature 1998, 393, 4952.
(11) Dürkop, T. Getty, S. A. Cobas, E.; Fuhrer, M. S. Nano Letters 2004, 4, 3539.
(12) Gilje, S. Han, S. Wang, M. Wang, K. L.; Kaner, R. B. Nano Letters 2007, 7, 33943398.
(13) Eda, G. Fanchini, G.; Chhowalla, M. Nat Nano 2008, 3, 270274.
(14) Arnold, M. S. Zimmerman, J. D. Renshaw, C. K. Xu, X. Lunt, R. R. Austin, C. M.; Forrest, S. R. Nano Letters 2009, 9, 33543358.
(15) Kim, F. Cote, L. J.; Huang, , J. Advanced Materials 2010, 22, 19541958.
(16) Kim, J. Cote, L. J. Kim, F. Yuan, W. Shull, K. R.; Huang, , J. Journal of the American Chemical Society 2010, 132, 81808186.
(17) Cote, L. J. Kim, J. Tung, V. C. Luo, J. Kim, F.; Huang, , J. Pure Appl. Chem. 2011, 83, 95110.
(18) Schniepp, H. C. Li, J.-L. McAllister, M. J. Sai, H. Herrera-Alonso, M. Adamson, D. H. Prud’homme, R. K. Car, R. Saville, D. A. Aksay, I. A. The Journal of Physical Chemistry B 2006, 110, 85358539.
(19) Stankovich, S. Dikin, D. Dommett, A., Kohlhaas, G. H. B., Zimney, K. M., Stach, E. J., Piner, E. A., Nguyen, R. D., Ruoff, S. T., R. S. Nature 2006, 442, 282286.
(20) Cote, L. Cruz-Silva, J., Huang, R., J. Journal of the American Chemical Society 2009, 131, 1102711032.
(21) Hummers, W. S.; Offeman, R. E. Journal of the American Chemical Society 1958, 80, 1339.
(22) Cote, L. J. Kim, F.; Huang, J. Journal of the American Chemical Society 2009, 131, 10431049.
(23) Kim, F. Luo, J. Cruz-Silva, R. Cote, L. Sohn, J., Huang, K., J. Adv. Funct. Mater. 2010, 20, n/a-n/a.
(24) Erickson, K. Erni, R. Lee, Z. Alem, N. Gannett, W.; Zettl, A. Adv. Mater. 2010, n/a-n/a.
(25) Hare, J. Kroto, P., Taylor, H. W., R. Chemical Physics Letters 1991, 177, 394-398.
(26) Ausman, K. D. Piner, R. Lourie, O. Ruoff, R. S. Korobov, M. The Journal of Physical Chemistry B 2000, 104, 89118915.
(27) Li, D., Muller, M. B., Gilje, S., Kaner, R. B., Wallace, G. G., Nat Nano 2008, 3, 101105.
(28) Dresselhaus, M. S. Jorio, A. Hofmann, M. Dresselhaus, G.; Saito, R. Nano Letters 2010, 10, 751758.
(29) Sato, N. Saito, Y.; Shinohara, H. Chemical Physics 1992, 162, 433438.
(30) Shirley, E. L.; Louie, S. G. Phys. Rev. Lett. 1993, 71, 133.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed