Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T08:01:56.840Z Has data issue: false hasContentIssue false

Amine-rich Polyelectrolyte Adhesion Layers as an Alternative to APTES for Surface Immobilization of Biomolecules and Nanostructures

Published online by Cambridge University Press:  30 August 2011

Stefan V. Stoianov
Affiliation:
Department of Physics, Virginia Tech, Blacksburg, VA 24061, U.S.A.
Jason I. Ridley
Affiliation:
Department of Physics, Virginia Tech, Blacksburg, VA 24061, U.S.A.
Hans D. Robinson
Affiliation:
Department of Physics, Virginia Tech, Blacksburg, VA 24061, U.S.A.
Get access

Abstract

We propose the use of amine-rich polyelectrolyte multilayers as a versatile, high quality, tunable adhesive surfaces for biomedical and nanotechnological applications. The films are simple to fabricate under mild conditions and provide at least as good adhesion as standard aminopropyltriethoxysilane terminated glass substrates. In addition, the multilayer surface can be reliably passivated by acetylation with acetic anhydride which reduces the adhesion to the point that non-specific binding of proteins and nanoparticles becomes all but negligible. We demonstrate that this property, in combination with the robustness of the film, makes it possible to pattern the adhesiveness of the film at the nanoscale level.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bae, S. S., Lim, D. K., Park, J. I., Lee, W. R., Cheon, J., and Kim, S., J. Phys. Chem. B 108, 2575 (2004).10.1021/jp036538jGoogle Scholar
2. Dejeu, J., Rougeot, P., Gauthier, M., and Boireau, W., Micro Nano Lett. 4, 74 (2009).10.1049/mnl.2009.0004Google Scholar
3. Chen, C. F., Wu, C. L., and Gwo, S., Appl Phys Lett 89 (2006).Google Scholar
4. Almeida, A. T., Salvadori, M. C., and Petri, D. F. S., Langmuir 18, 6914 (2002).10.1021/la0202982Google Scholar
5. Falsey, J. R., Renil, M., Park, S., Li, S. J., and Lam, K. S., Bioconj. Chem. 12, 346 (2001).10.1021/bc000141qGoogle Scholar
6. Mendelsohn, J. D., Barrett, C. J., Chan, V. V., Pal, A. J., Mayes, A. M., and Rubner, M. F., Langmuir 16, 5017 (2000).10.1021/la000075gGoogle Scholar
7. Hiller, J., Mendelsohn, J. D., and Rubner, M. F., Nat. Mater 1, 59 (2002).10.1038/nmat719Google Scholar
8. Itano, K., Choi, J. Y., and Rubner, M. F., Macromol. 38, 3450 (2005).10.1021/ma047667gGoogle Scholar
9. Kern, W. and Poutinen, D. A., RCA Review 31, 187 (1970).Google Scholar
10. Frens, G., Nature Physical Sciance 241, 20 (1973).10.1038/physci241020a0Google Scholar
11. Vandenberg, E. T., Bertilsson, L., Liedberg, B., Uvdal, K., Erlandsson, R., Elwing, H., and Lundstrom, I., J. Colloid Interface Sci. 147, 103 (1991).10.1016/0021-9797(91)90139-YGoogle Scholar
12. Olmos, D., Gonzalez-Benito, J., Aznar, A. J., and Baselga, J., J. Mater. Process. Technol. 143, 82 (2003).10.1016/S0924-0136(03)00325-XGoogle Scholar
13. Asenath-Smith, E. and Chen, W., Langmuir 24, 12405 (2008).10.1021/la802234xGoogle Scholar
14. Chow, B. Y., Mosley, D. W., and Jacobson, J. M., Langmuir 21, 4782 (2005).10.1021/la050144xGoogle Scholar
15. Howarter, J. A. and Youngblood, J. P., Langmuir 22, 11142 (2006).10.1021/la061240gGoogle Scholar
16. Zhang, F. X. and Srinivasan, M. P., Langmuir 20, 2309 (2004).10.1021/la0354638Google Scholar
17. Chen, K., Stoianov, S. V., Bangerter, J., and Robinson, H. D., J. Colloid Interface Sci. 344, 315 (2010).10.1016/j.jcis.2010.01.010Google Scholar
18. Haynes, C. L. and Van Duyne, R. P., J. Phys. Chem. B 105, 5599 (2001).10.1021/jp010657mGoogle Scholar