Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-11T14:06:05.833Z Has data issue: false hasContentIssue false

An Algorithm for Tailoring of Nanoparticles by Double Angle Resolved Nanosphere Lithography

Published online by Cambridge University Press:  10 February 2015

Christoph Brodehl
Affiliation:
University of Paderborn, Dept. of Physics, Warburger Str. 100, 33098 Paderborn, Germany. Center for Optoelectronics and Photonics Paderborn (CeOPP), 33098 Paderborn, Germany.
Siegmund Greulich-Weber
Affiliation:
University of Paderborn, Dept. of Physics, Warburger Str. 100, 33098 Paderborn, Germany. Center for Optoelectronics and Photonics Paderborn (CeOPP), 33098 Paderborn, Germany.
Jörg K. N. Lindner
Affiliation:
University of Paderborn, Dept. of Physics, Warburger Str. 100, 33098 Paderborn, Germany. Center for Optoelectronics and Photonics Paderborn (CeOPP), 33098 Paderborn, Germany.
Get access

Abstract

Nanosphere lithography (NSL) is a technique capable of creating large-area arrays of small objects with tailor-made shapes. Here we present an algorithm, which simulates the shape and morphology of nanoparticles produced via NSL in combination with physical vapor deposition from variable angles. The key idea is based on a ray-tracing technique. Mask clogging effects have a major influence on the shape of resulting nanoobjects and are therefore taken into account. In addition, we implemented a metaball concept for the precise description of thermally modified masks. The calculated results are compared exemplarily with atomic force microscopy (AFM) data of experimentally fabricated nanostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Deckman, H. W., Dunsmuir, J. H., Appl. Phys. Lett. 41, 337 (1982).CrossRefGoogle Scholar
Haynes, Ch. L. and Van Duyne, R. P., J. Phys. Chem. B 105, 5599 (2001).CrossRefGoogle Scholar
Kosiorek, A., Kandulski, W., Chudzinski, P., Kempa, K., Giersig, M., Nano Lett. 4, 1359 (2004).CrossRefGoogle Scholar
Kosiorek, A., Kandulski, W., Glaczynska, H., Giersig, M., Small 1, 439 (2005).CrossRefGoogle Scholar
Gwinner, M. C., Koroknay, E., Fu, L., Patoka, P., Kandulski, W., Giersig, M., Giessen, H., Small 5, 400 (2009).CrossRefGoogle Scholar
Riedl, T., Strake, M., Sievers, W., Lindner, J.K.N., MRS Proc. 1663, mrsf13-1663-ww03-75 (2014).Google Scholar
Lindner, J. K. N., Kraus, D., Stritzker, B., Nucl. Instr. and Meth. B 257, 455 (2007).Google Scholar
Gogel, D., Weinl, M., Lindner, J. K. N., Stritzker, B., J. of Optoelectronics and Adv. Mat. 12, 740 (2010).Google Scholar
Blinn, J. F., ACM Trans. Graph. 1, 235 (1982).CrossRefGoogle Scholar
Brodehl, C., Greulich-Weber, S., Lindner, J. K. N., to be published.Google Scholar
Horcas, I., Fernández, R., Gómez-Rodríguez, J. M., Colchero, J., Gómez-Herrero, J., Baro, A. M., Rev. Sci. Instrum. 78, 013705 (2007).CrossRefGoogle Scholar