Published online by Cambridge University Press: 12 July 2012
An efficient implementation of PNP-cDFT, a multiscale method for computing the chemical potentials of charged species is designed and evaluated. Spatial decomposition of the multi particle system is employed in the parallelization of classical density functional theory (cDFT) algorithm. Furthermore, a truncation strategy is used to reduce the computational complexity of cDFT algorithm. The simulation results show that the parallel implementation has close to linear scalability in parallel computing environments. It also shows that the truncated versions of cDFT improve the efficiency of the methods substantially.