Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T06:19:46.913Z Has data issue: false hasContentIssue false

An X-Ray Study of Domain Structure and Stress in Pd2Si Films at Pd-Si Interfaces

Published online by Cambridge University Press:  15 February 2011

Haydn Chen
Affiliation:
Department of Metallurgy and Mining Engineering, The Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (U.S.A.)
G. E. White
Affiliation:
Department of Metallurgy and Mining Engineering, The Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (U.S.A.)
S. R. Stock
Affiliation:
Department of Metallurgy and Mining Engineering, The Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (U.S.A.)
P. S. Ho
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (U.S.A.)
Get access

Extract

The domain structures of palladium and Pd2Si as well as their crystallographic relationship to the silicon substrates were determined on Si(111) and Si(100) samples by mapping X-ray diffraction pole figures. X-ray diffraction topography and rocking curve measurements were carried out for the silicon substrates in order to detect the presence of elastic and/or plastic deformation in the substrates caused by silicide formation. The stresses in the silicide films were determined from the bending of the silicon substrates using X-ray diffraction techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kircher, C. J., Solid-State Electron., 14 (1971) 507.CrossRefGoogle Scholar
2 Buckley, W. D. and Moss, S. C., Solid-State Electron., 15 (1972) 1331.Google Scholar
3 Andrews, J. M. and Phillips, J. C., Phys. Rev. Lett., 35 (1975) 56.CrossRefGoogle Scholar
4 Koster, V., Tu, K. N. and Ho, P. S., Appl. Phys. Lett., 31 (1977) 634.CrossRefGoogle Scholar
5 Ho, P. S., Tan, T. Y., Lewis, J. E. and Rubloff, G. W., J. Vac. Sci. Technol., 16 (5) (1979) 1120.Google Scholar
5a Ho, P. S., Schmid, P. E. and Föll, H., Phys. Rev. Lett., 46 (1981) 782.CrossRefGoogle Scholar
5b Schmid, P. E., Ho, P. S., Föll, H. and Rubloff, G. W., J. Vac. Sci. Technol., 18 (1981) 937.Google Scholar
6 Freeouf, J. L., Rubloff, G. W., Ho, P. S. and Kuan, T. S., Phys. Rev. Lett., 43 (24) (1979) 1836.Google Scholar
6a Rubloff, G. W., Ho, P. S., Freeouf, J. F. and Lewis, J. E., Phys. Rev. B, 15 (23) (1981) 4183.CrossRefGoogle Scholar
7 Angilello, J., d'Heurle, F., Pettersson, S. and Segmüller, A., J. Vac. Sci. Technol., 17 (1980) 471.CrossRefGoogle Scholar
8 Föll, H., Ho, P. S. and Tu, K. N., J. Appl. Phys., 52 (1981) 250.Google Scholar
9 Boettigner, W. J., Burdette, H. E., Kuriyama, M. and Green, R. E. Jr., Rev. Sci. Instrum., 47 (8) (1976) 906.Google Scholar
10 Chen, H. and Kuriyama, M., J. Appl. Cryst., 14(1981)280.Google Scholar
11 Cullity, B. D., Elements of X-ray Diffraction, Addison-Wesley, Reading, MA, 1978, p. 102.Google Scholar
12 Tanner, B. K., X-ray Diffraction Topography, Pergamon, Oxford, 1976, p. 67.Google Scholar