Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-08T00:12:30.819Z Has data issue: false hasContentIssue false

Analysis of Strain Relaxation in Au/Ni Multilayers by X-Ray Diffraction

Published online by Cambridge University Press:  28 February 2011

J. Chaudhuri
Affiliation:
The Wichita State University, Inst. for Aviation Research, Wichita, KS 67208
V. Gondhalekar
Affiliation:
The Wichita State University, Inst. for Aviation Research, Wichita, KS 67208
S. Shah
Affiliation:
The Wichita State University, Inst. for Aviation Research, Wichita, KS 67208
A.F. Jankowski
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

The strain distribution within individual layers in Au/Ni multilayer systems was obtained by an iterative fitting of the experimental x-ray diffraction pattern with a kinematic model. The depth profile of strain in the modulation direction was obtained for these metallic multilayers with repeat periodicities ranging from 1.19 nm to 4.26 nm. It was found that the role of interfacial coherency and strengthening is of great importance in understanding the origin of the supermodulus effect in metallic multilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Yang, W. M. C., Tsakalakos, T. and Hillard, J. E., J. Appl. Phys. 48, 876 (1977) .Google Scholar
2Schuller, I. K., Phys. Rev. Lett. 44, 1597 (1980).Google Scholar
3Gyorgy, E. M., Mcwhan, D. B., Dillon, J. F. Jr., Walker, L. R. and Wasczak, J. V., Phys. Rev. B 25, 6739 (1982).Google Scholar
4Khan, M. R., Chun, C. S. L., Felcher, G. P., Grimsditch, M., Kueny, A., Falco, C. M. and Schuller, I. K., Phys. Rev. B. 27, 7186 1983) .Google Scholar
5Fujii, Y., Ohnishi, T., Ishihara, T., Yamada, Y., Kawaguchi, K., Naayama, N. and Shinjo, T., J. Phys. Soc. Japan 55, 251 (1986).Google Scholar
6Mitura, Z. and Mikolajczak, P., J. Phys. F: Met. Phys. 18, 183 (1988) .Google Scholar
7Speriosu, V. S., J. Appl. Phys. 52 (10), 6094 (1981).Google Scholar
8Speriosu, V. S. and Vreeland, T. Jr., J. Appl. Phys. 56 (6),1591 (1984).Google Scholar
9Nutt, S. R., Green, K. A., Baker, S. P., Nix, W. T. and Jankowski, A. F., MRS Symp. Proc. 130, 129 (1989).Google Scholar
10Jankowski, A. F., J. Phys. F: Met. Phys. 18, 183 (1988).Google Scholar
11Ibers, J. A. and Hamilton, W. C., eds., International Tables for X-Ray Crystallography, Vol. IV (Kynoch, Birmingham, 1974).Google Scholar
12Yang, W. M. C., Ph. D. Thesis, Northwestern University, Evanston, Il (1971).Google Scholar
13Chen, S. P., Voter, A. F. and Albers, R. C., Phys. Rev. B 39, 1395 (1989).Google Scholar