Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T00:07:33.972Z Has data issue: false hasContentIssue false

Anharmonic Lifetime of Phonons in Nanophononic Semiconductors

Published online by Cambridge University Press:  31 January 2011

Steven Hepplestone
Affiliation:
hepple@excc.ex.ac.uk, University of Exeter, School of Physics, Exeter, United Kingdom
Gyaneshwar P Srivastava
Affiliation:
gps@excc.ex.ac.uk, University of Exeter, School of Physics, Exeter, United Kingdom
Get access

Abstract

We present a theory of three-phonon interactions in nanophononic semiconductors at 300˜K. The intrinsic lifetime of phonon modes is estimated from the application of Fermi's Golden Rule, based on realistic phonon dispersion relations and a quasi-continuum model for the cubic anharmonicity. We show that the lifetime of phonon modes in the Si(0.543˜nm)/- Ge(0.543˜nm)[100] superlattice is shorter than the average of results for bulk Si and Ge. This is explained in terms of the availability of additional decay routes and an additional Dual Mass factor which arises due the different densities of Si and Ge.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ezzahri, Y. Grauby, S. Rampnoux, J. M. Michel, H. Pernot, G. Claeys, W. Dilhaire, S. Rossignol, C. Zeng, G. and Shakouri, A. Phys. Rev. B 75, 195309 (2007).Google Scholar
[2] Lanzillotti-Kimura, N. D., Fainstein, A. Lemaitre, A. and Jusserand, B. Appl. Phys. Lett. 88, 083113 (2006).Google Scholar
[3] Lee, S.-M. Cahill, D. G. and Venkatasubramanian, R.. Appl. Phys. Lett. 70, 2957 (1997).Google Scholar
[4] Capinski, W. S. Maris, H. J. Ruf, T. Cardona, M. Ploog, K. and Katzer, D. S. Phys. Rev. B 59, 8105 (1999).Google Scholar
[5] Vasseur, J. O. Deymier, P. A. Lambin, Ph., Djafari-Rouhani, B., Akjouj, A. Dobrzynski, L. Fettouhi, N. and Zemmouri, J. Phys. Rev. B 77, 085415 (2008).Google Scholar
[6] Baumgartl, J. Zvyagolskaya, M. and Bechinger, C. Phys. Rev. Lett 99, 205503 (2007).Google Scholar
[7] Siglas, M. and Economou, E. N. Solid State Commun. 86, 141 (1993).Google Scholar
[8] Yan, Z.-Z. and Wang, Y.-S., Phys. Rev B 74, 224303 (2006).Google Scholar
[9] Han, Y.-J. and Klemen, P. G. Phys. Rev. B 48, 6033 (1993).Google Scholar
[10] Hepplestone, S. P. and Srivastava, G. P. Phys. Rev. Lett. 101, 1105502 (2008).Google Scholar
[11] Ren, S. Y. and Dow, J. D. Phys. Rev. B 25, 3750 (1982).Google Scholar
[12] AlShaikhi, A. and Srivastava, G. P. Phys. Rev. B 76, 195205 (2007).Google Scholar
[13] Srivastava, G. P. The Physics of Phonons (Adam Hilger, Bristol, 1990).Google Scholar
[14] Monkhurst, H. J. and Pack, J. D. Phys. Rev. B 13, 5188 (1976).Google Scholar