Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T21:06:34.049Z Has data issue: false hasContentIssue false

Annealing Effects in Ion Bombarded GaAs: Raman Measurements

Published online by Cambridge University Press:  26 February 2011

Gerald Burns
Affiliation:
IBM, Thomas J. Watson Research Center, Yorktown Heights, New York, 10598
F. H. Dacol
Affiliation:
IBM, Thomas J. Watson Research Center, Yorktown Heights, New York, 10598
J. E. E. Baglin
Affiliation:
IBM, Thomas J. Watson Research Center, Yorktown Heights, New York, 10598
C. R. Wie
Affiliation:
Dept. of Electr. and Computer Eng., SUNY at Buffalo, Amherst, NY 14260
E. Burstein
Affiliation:
Physics Department, University of Pennsylvania, Philadelphia, PA 19101
M. Cardona
Affiliation:
Max -Planck-Institute für Festkörperforschung, D-7000 Stuttgart 80, Federal Republic of Germany
Get access

Abstract

The surface layer of single crystal GaAs that has been bombarded with high energy (2-15 MeV) ions is strained and contains many defects, but it remains crystalline. We have studied the isochronal annealing behavior of this layer using phonon shifts and widths, which were detected by Raman measurements. We do not find any sharp annealing stages to 500 C, at which temperature the phonons have returned to their positions in the unbombarded crystals. These results are consistent with the idea that the phonon shifts are primarily due to antisites and their complexes with other primary defects. However, other extended defects may still be present, and the Raman data show some evidence for this.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Many papers in this area have been published. For example see the the following and the references quoted in them. (a) Tsu, R., Baglin, J. E., Lasher, G. L., and Tsang, J. C., Appl. Phys. Lett. 34, 153 (1979). (b) J. F. Morhange, G. Kanellis, and M. Balkanski, J. Phys. Soc. Japan 48, SupI., 1295 (1980). (c) R. E. Whan and G. W. Arnold, Appl. Phys. Lett. 17, 378 (1970). (d) D. R. Myers, P. L. Gouley, and P.S. Peercy, J. Appl. Phys. 54, 5032 (1983).Google Scholar
2. Richter, H., Wang, Z. P., and Ley, L., Solid State Commnun., 39, 625 (1981).Google Scholar
3. Tiong, K., Amirtaraj, P. M., Pollak, F., and Aspnes, D. E., App. Phys. Lett., 44, 122 (1984). P. Parnyanthal and F. Pollak, Phys. Pev. Lett., 52, 1822 (1984).Google Scholar
4. Burns, G., Dacol, F. H., Wie, C. R., Burstein, E., and Cardona, M., Solid State Commun., to be published.Google Scholar
5. Sood, A. K., Menendez, J., Cardona, M., and Plog, K. Phys. Pev. Lett. 54, 2111 (1985).CrossRefGoogle Scholar
6. Molinari, E., Fascolino, A., and Kunc, K., Phys. Pev. Lett. 56, 1751 (1986). B. Jusserrand and D. Paquet, Phys. Pev. Lett. 56, 1752 (t986). A. K. Sood, J. Menendez, M. Cardona, and K. Plog, Phys. Pev. Lett. 56, 1753 (1986). In this latter paper, the corrected phonon dispersion curve of reference 13 is replotted; however the changes are small.Google Scholar
7. Waugh, J. L. and Dolling, G., Phys. Rev. 132, 2410 (1963). G. Dolling and J. L. Waugh, in Lattice Dynamics, edited by R. F. Wallis (Pergamon, London, 1965), p. 19. K. C. Rustagi and W. Weber, Solid State Commun. 18, 673 (1976).Google Scholar
8. Burns, G., “Solid State Physics” (Academic Press, 1985), Chapter 13.Google Scholar
9. Wie, C. R., Vreeland, T. Jr., and Tombrello, T. A., Mat. Res. Soc. Symp. Proc. 35, 305 (1985).CrossRefGoogle Scholar
10. Wie, C. R., Tombrello, T. A., Vreeland, T. Jr., Phys. Rev. B. 33, 4083 (1986).Google Scholar
11. Wie, C. R., Vreeland, T. Jr., and Tombrello, T. A., Nucl. Instr. Meth. B. 16, 44 (1986).Google Scholar
12.For example see Wie, C. R., Ph. D. Thesis, California Institute of Tehnology (1985), or C. R. Wie, T. A. Tombrello, T. Vreeland Jr., J. Appl. Phys. 59, 3743 (1986).Google Scholar
13.A longer more detailed paper describing our results is in preparation.Google Scholar
14. Pons, D., Mircea, A., and Bourgoin, J., J. Appl. Phys. 51, 4150 (1980).Google Scholar
15. Wörner, R., Kaufman, U., and Schneider, J., Appl. Phys. Lett. 40, 141 (1982)Google Scholar
16. Beall, R. B., Newman, R. C., and Whitehouse, J. E., J. Phys. C 19, 3745 (1986).CrossRefGoogle Scholar
17.For example see Kolchensko, T. I. and Lamako, V. M., Radiation Effects 37, 67 (1978).Google Scholar
18. Picraux, S. T., Radiation Effects 17, 261 (1973).Google Scholar