Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T21:48:43.200Z Has data issue: false hasContentIssue false

Anodic Hydrogen Oxidation at Bare and Pt-modified Ru(0001) in Flowing Electrolyte – Theory versus Experiment

Published online by Cambridge University Press:  10 May 2012

Harry E. Hoster*
Affiliation:
Technische Universität München, Department Chemie, Lichtenbergstraße 4, 85747 Garching b. München, Germany TUM CREATE Centre for Electromobility, 62 Nanyang Drive, Singapore 637459
Get access

Abstract

This paper reports on electrochemical hydrogen oxidation at atomically smooth single crystal surfaces. These surfaces are considered as planar models for (bi)metallic nanoparticles that are commonly used as catalytically active electrode materials in low-temperature fuel cells. These samples are prepared in ultrahigh vacuum but are characterized under conditions of enhanced mass transport in hydrogen saturated electrolyte. The two examples shown in this paper are Ru(0001) with or without an atomically thin layer of Pt. The Pt thin layer turns out to be more active than pure Ru(0001) by three orders of magnitude and also more active than bulk Pt electrodes. We show that those findings agree very well with predictions based on density functional theory in combination with a simple kinetic model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vielstich, W., Gasteiger, H.A., and Lamm, A., editors, Handbook of Fuel Cells. Fundamentals, Technology and Applications - Vol. 1: Fundamentals and Survey of Systems (Wiley & Sons, Chichester, 2003), pp. 1440.Google Scholar
2. Entina, V.S. and Petrii, O.A., Elektrokhimiya 3, 12371240 (1967).Google Scholar
3. Watanabe, M. and Motoo, S., Journal of Electroanalytical Chemistry 60, 275283 (1975).Google Scholar
4. Wang, J.X., Brankovic, S.R., Zhu, Y., Hanson, J.C., and Adzic, R.R., Journal of the Electrochemical Society 150, A1108A1117 (2005).Google Scholar
5. Hoster, H.E., Alves, O.B., and Koper, M.T.M., ChemPhysChem 11, 15181524 (2010).Google Scholar
6. Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G., Pandelov, S., and Stimming, U., Journal of the Electrochemical Society 152, J23J26 (2005).Google Scholar
7. Greeley, J., Nørskov, J.K., Kibler, L.A., El-Aziz, A.M., and Kolb, D.M., Chem.Phys.Chem. 7, 10321035 (2006).Google Scholar
8. Kopatzki, K.E., Sauerstoffadsorption, Oxidbildung Und Homoepitaxie Auf Ni(100) Oberflächen - Eine Untersuchung Mit Dem Rastertunnelmikroskop, Ludwig-Maximilians Universität München, 1994.Google Scholar
9. Hoster, H.E. and Behm, R.J., in Fuel Cell Catalysis: A Surface Science Approach, edited by Koper, M.T.M. (Wiley&Sons, Chichester, 2008), pp. 465505.Google Scholar
10. Buatier de Mongeot, F., Scherer, M., Gleich, B., Kopatzki, E., and Behm, R., Surface Science 411, 249262 (1998).Google Scholar
11. Hoster, H.E., Richter, B., and Behm, R.J., Journal of Physical Chemistry B 108, 1478014788 (2004).Google Scholar
12. Hoster, H.E. and Gasteiger, H.A., in Handbook of Fuel Cells - Fundamentals Technology and Applications, edited by Vielstich, W., Gasteiger, H.A., and Lamm, A. (Wiley, Chichester, 2003), pp. 236265.Google Scholar
13. Gasteiger, H.A., Markovic, N.M., and Ross, P.N., The Journal of Physical Chemistry 99, 82908301 (1995).Google Scholar
14. El-Aziz, A.M. and Kibler, L.A., Electrochemistry Communications 4, 866870 (2002).Google Scholar
15. Alves, O., Hoster, H., and Behm, R., Phys. Chem. Chem. Phys. 13, 601021 (2011).Google Scholar
16. Hoster, H.E., Janik, M.J., Neurock, M., and Behm, R.J., Physical Chemistry Chemical Physics: PCCP 12, 1038897 (2010).Google Scholar
17. Hamann, C.H., Hamnett, A., and Vielstich, W., Electrochemistry (Wiley VCH, Weinheim, 2007).Google Scholar
18. Schlapka, A., Lischka, M., Groß, A., Käsberger, U., and Jakob, P., Physical Review Letters 91, 016101 (2003).Google Scholar
19. Schlapka, A., Käsberger, U., Menzel, D., and Jakob, P., Surface Science 502503, 129135 (2002).Google Scholar
20. Hoster, H.E., Koper, M.T.M., and Behm, R.J., (2007).Google Scholar
21. Lischka, M., Mosch, C., and Gross, A., Electrochimica Acta 52, 2219 (2007).Google Scholar
22. Hammer, B., Morikawa, Y., and Nørskov, J.K., Physical Review Letters 21412144 (1996).Google Scholar
23. Markovic, N.M., Grgur, B.N., and Ross, P.N., Journal of Physical Chemistry B 101, 54055413 (1997).Google Scholar
24. Sabatier, P., La Catalyse En Chimie Organique (Librairie Polytechnique Beranger, Paris, 1913).Google Scholar
25. Nørskov, J.K., Bligaard, T., Logadottir, a, Kitchin, J.R., Chen, J.G., Pandelov, S., and Stimming, U., Journal of The Electrochemical Society 152, J23 (2005).Google Scholar
26. Ciobica, I., Kleyn, A., and van Santen, R.A., The Journal of Physical 4, 164172 (2003).Google Scholar