Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-16T13:12:16.287Z Has data issue: false hasContentIssue false

Application of SC-Simul for Numerical Modeling of the Opto-Electronic Properties of Heterojunction Diodes

Published online by Cambridge University Press:  01 February 2011

R. Brüggemann
Affiliation:
Institut für Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, GermanyEmail: rudi.brueggemann@uni-oldenburg.de
M. Rösch
Affiliation:
Institut für Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, GermanyEmail: rudi.brueggemann@uni-oldenburg.de
S. Tardon
Affiliation:
Institut für Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, GermanyEmail: rudi.brueggemann@uni-oldenburg.de
G.H. Bauer
Affiliation:
Institut für Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, GermanyEmail: rudi.brueggemann@uni-oldenburg.de
Get access

Abstract

We apply the publicly available device modeling tool SC-Simul for simulating experiments with user-defined heterojunction diodes to discuss the role of the electric field in solar cells. For amorphous silicon/crystalline silicon heterodiodes, the role of interface defects, an amorphous silicon buffer layer and low-cost crystalline silicon is studied by simulation of current-voltage characteristics and photoluminescence. Photoluminescence is sensitive to the minority carrier density in the volume of the device and can be used to monitor minority carrier properties in these diodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

2 Rösch, M., Ph.D. Thesis, Universität Oldenburg, 2003 (in German), available online at docserver. bis.uni-oldenburg.de/publikationen/dissertation/2003/roeexp03/roeexp03.htmlGoogle Scholar
3 Brüggemann, R., Rösch, M., J. Optoelectr. Adv. Mat. 7, 65 (2005).Google Scholar
4 Rösch, M., Brüggemann, R., Bauer, G.H., 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, Eds. Schmid, J. et al., Joint Research Centre, Ispra, 1998, p. 946.Google Scholar
5 Rösch, M., Unold, T., Pointmayer, R., Bauer, G.H., MRS Symp. Proc. 557, 463 (1999).10.1557/PROC-557-463Google Scholar
6 Bauer, G.H., Brüggemann, R., Tardon, S., Rösch, M., Unold, T., phys. stat. sol. (c) 862, 1308 (2004).Google Scholar
7 Tardon, S., Rösch, M., Brüggemann, R., Unold, T., Bauer, G.H., J. Non-Cryst. Solids 338, 444 (2004).10.1016/j.jnoncrysol.2004.03.015Google Scholar
8 Würfel, P., Physics of Solar cells (VCH, Weinheim, 2004).Google Scholar
9 Wolfe, C.M., Holonyak, N., Stillman, G.E., Physical Properties of Semiconductors (Prentice Hall International, London, 1989), chap. 9 (Heterostructures).Google Scholar
10M.Scherff, L.D., Froitzheim, A., Ulyashin, A., Schmidt, M., Fahrner, W.R., Fuhs, W., International Conference on PV in Europe - from PV Technology to Energy Solutions, Rome, Eds. Bal, J.-L. et al., ETA, Florence, 2002, p. 216.Google Scholar
11 Stangl, R., Froitzheim, A., Kriegel, M., Brammer, T., Kirste, S., Elstner, L., Stiebig, H., Schmidt, M., Fuhs, W., 19th European Photovoltaic Solar Energy Conference, Paris, Eds. Hoffmann, W. et al., WIP, Munich, 2004, p. 1497.Google Scholar
12 Martín, I., Vetter, M., Orpella, A., Voz, C., Puigdollers, J., Alcubilla, R., Kharchenko, A. V., Cabarrocas, P. Roca i, Appl. Phys. Lett. 84, 1474 (2004).10.1063/1.1647702Google Scholar
13 Jensen, N., Hausner, R. M., Bergmann, R. B., Werner, J. H., Rau, U., Progress in Photovoltaics: Research and Applications 10, 1 (2002).10.1002/pip.398Google Scholar
14 Kuwano, Y., Nakano, S., Takahama, T., Masuyama, T., Isomura, M., Nakamura, N., Haku, H., Nishikuni, M., Nishiwaki, H., Tsuda, S., Materials Research Society Symposia Proceedings 258, 857 (2001).10.1557/PROC-258-857Google Scholar