Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T15:48:10.227Z Has data issue: false hasContentIssue false

Atom Probe Microscopy and its Future

Published online by Cambridge University Press:  21 February 2011

T. F. Kelly
Affiliation:
Materials Science Program, University of Wisconsin, Madison, WI 53706 Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706 Applied Superconductivity Center, University of Wisconsin, Madison, WI 53706
P. P. Camus
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, WI 53706 Applied Superconductivity Center, University of Wisconsin, Madison, WI 53706
D. J. Larson
Affiliation:
Materials Science Program, University of Wisconsin, Madison, WI 53706 Applied Superconductivity Center, University of Wisconsin, Madison, WI 53706
L. M. Holzman
Affiliation:
Materials Science Program, University of Wisconsin, Madison, WI 53706 Applied Superconductivity Center, University of Wisconsin, Madison, WI 53706
Get access

Abstract

Much of the current activity and excitement in materials science involves processing and understanding materials at the atomic scale. Accordingly, it is necessary for materials scientists to control and characterize materials at the atomic level. There are only a few microscopies that are capable of providing information about the structure of materials at the atomic level: the atom probe field ion microscope, the high resolution transmission electron microscope, and the scanning tunneling microscope. The three-dimensional atom probe (3DAP) determines the 3D location and elemental identity of each atom in a sample. It is the only technique that provides 3D information at the atomic scale.

The origin and underlying concepts behind the 3DAP are described. Several examples of actual images from existing 3DAPs are shown with emphasis on nanometer-scale analysis. Current limitations of the technique and expected future developments in this form of microscopy are described. It is our opinion that 3D atomic-scale imaging will be an indispensable tool in materials science in the coming decades.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Müller, E. W., Panitz, J. A. and McLane, S. B., Rev. Sci. Instrum., 39 (1968) 83.Google Scholar
[2] Müller, E. W., Z. Phys., 131 (1951) 136.Google Scholar
[3] Müller, E. W., Z. Phys., 106 (1937) 541.Google Scholar
[4] Müller, M. K., Int. Metals Rev., 1988.Google Scholar
[5] Tsong, T. T., Surf. Sci., 70 (1978) 219.Google Scholar
[6] Kellogg, G. L. and Tsong, T. T., J. Appl. Phys., 51 (1980) 1184.Google Scholar
[7] Poschenrieder, W. P., Int. J. Mass Spectrom. Ion Phys., 6 (1971) 413.Google Scholar
[8] Karataev, V. I., Mamyrin, B. A. and Shmikk, D. V., Sov. Phys. Technol. Phys., 16 (1972) 1177.Google Scholar
[9] Panitz, J. A, Prog. Surf. Sci., 8 (1978) 219.Google Scholar
[10] Melmed, A. J., Martinka, M. and Klein, R., Proc. 29th Intern. Field Emission Symp., eds Andrén, H-O. and Nordén, H., 243 (1982).Google Scholar
[11] Smith, G. D. W. and Cerezo, A., International Patent Application PCT/GB86/00437, publication no. W087/00682, July 24th, 1987.Google Scholar
[12] Cerezo, A., Godfrey, T. J. and Smith, G. D. W., Rev. Sci. Instrum., 59 (1988) 862.Google Scholar
[13] Martin, C., Jelinsky, P., Lampton, M. and Malina, R. F., Rev. Sci. Instrum., 52 (1981) 1067.Google Scholar
[14] Cerezo, A., Godfrey, T. J., Grovenor, C. R. M., Hetherington, M. G., Hoyle, R. M., Jakubovics, J. P., Liddle, J. A., Smith, G. D. W. and Worrall, G. M., J. of Microscopy, 154 (1989) 215.Google Scholar
[15]Summary of first Workshop on 3D Atom Probes at the 40th Annual International Field Emission Symposium, Nagoya, Japan, to appear in proceedings of this meeting, Applied Surface Science (1993).Google Scholar
[16] Cerezo, A., personal communication (1991).Google Scholar
[17] Deconihout, B., Bostel, A., Bas, P., Chamberland, S., Letellier, L., Danoix, F. and Blavette, D., Accepted for publication in App. Surf. Sci. (1993).Google Scholar
[18] Cerezo, A., Brown, J. E., Godfrey, T. J., Grovenor, C. R. M., Hetherington, M. G., Hyde, J. M., Shallock, B. A., Sha, W. and G. Smith, D. W., “The Anatomy of Alloys,” commercial brochure for Kindbrisk, Ltd. of Oxford. England, 1990.Google Scholar
[19] Liddle, J. A., Long, N. J., Petford-Long, A. K., Materials Charac., 25 (1990) 157.Google Scholar
[20] Kelly, T. F., Nuri Zreiba, A., Howell, B. D. and Bradley, F. G., Surf. Sci., 246 (1991) 31.Google Scholar
[21] Camus, P. P., Larson, D. J. and Kelly, T. F., App. Surf. Sci., 67 (1993) 467.Google Scholar
[22] Kelly, T. F., McCarthy, J. J. and Mancini, D. C., US patent #5,061,850, issued October 29, 1991.Google Scholar
[23] Kelly, T. F., Mancini, D. C., McCarthy, Jon J. and Zreiba, N. A., Surf. Sci., 246 (1991) 396.Google Scholar
[24] Deconihout, B., Bostel, A., Menand, A., Sarrau, J. M., Bouet, M., Chamberland, S. and Blavette, D., App. Surf. Sci., 67 (1993) 444.Google Scholar
[25]M. Miller, K., Surf. Sci., 246 (1991) 428.Google Scholar
[26]L. Holzman, M., Kelly, T. F. and Camus, P. P., Patent application submitted July 1993 by Wisconsin Alumni Research Foundation.Google Scholar
[27] Russ, J. C., The Image Processing Handbook, (CRC Press, Boca Raton, FL, 1992), p. 207.Google Scholar
[28] Heel, M. Van, private communication (1993).Google Scholar
[29] Nishikawa, O. and Kimoto, M., Accepted for publication in App. Surf. Sci.Google Scholar