Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T21:04:45.681Z Has data issue: false hasContentIssue false

Atomic Scale Engineering of Superlattices and Magnetic Wires

Published online by Cambridge University Press:  15 February 2011

J. Camarero
Affiliation:
Dpto. de Física de la Materia Condensada, C-III, Univ. Autónoma, Cantoblanco, E-28049 Madrid, Spain
J. de la Figuera
Affiliation:
Dpto. de Física de la Materia Condensada, C-III, Univ. Autónoma, Cantoblanco, E-28049 Madrid, Spain
L. Spendeler
Affiliation:
Dpto. de Física de la Materia Condensada, C-III, Univ. Autónoma, Cantoblanco, E-28049 Madrid, Spain
X. Torrellas
Affiliation:
E.S.R.F., B.P. 220, F-38043, Grenoble, France
J. Alvarez
Affiliation:
E.S.R.F., B.P. 220, F-38043, Grenoble, France
S. Ferrer
Affiliation:
E.S.R.F., B.P. 220, F-38043, Grenoble, France
J.J. de Miguel
Affiliation:
Dpto. de Física de la Materia Condensada, C-III, Univ. Autónoma, Cantoblanco, E-28049 Madrid, Spain
J.M. García
Affiliation:
Dpto. de Física de la Materia Condensada, C-III, Univ. Autónoma, Cantoblanco, E-28049 Madrid, Spain
O. Sáinchez
Affiliation:
Dpto. de Física de la Materia Condensada, C-III, Univ. Autónoma, Cantoblanco, E-28049 Madrid, Spain
J.E. Ortega
Affiliation:
Dpto. de Física de la Materia Condensada, C-III, Univ. Autónoma, Cantoblanco, E-28049 Madrid, Spain
R. Miranda
Affiliation:
Dpto. de Física de la Materia Condensada, C-III, Univ. Autónoma, Cantoblanco, E-28049 Madrid, Spain
Get access

Extract

In the past years artificially-structured materials have been grown with an increasing degree of sophistication due to steady progress in our ability to control growth processes down to the atomic level. These materials have yielded new physical properties due to the confinement of electrons in less than three dimensions. Thus, the confinement of electrons in two-dimensional (2D) metallic superlattices has resulted in oscillatory magnetic coupling with an associated oscillatory giant magnetoresistance (GMR). New properties are expected when the electrons are further confined to one dimension (1D) of free motion in the structures known as quantum wires. In this report we briefly describe two recent examples of atomic-scale engineering of materials. In the first case a surfactant is used to purposely modify the structure of magnetic/non magnetic superlattices. The second example illustrates a further reduction in dimensionality obtained by modifying the substrate onto which the growth takes place: the fabrication of 1D magnetic quantum wires on vicinal surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] , L. González et al. , Phys. Rev. B 24, 3245 (1981).Google Scholar
[2] Cerdi, J. R. et al. , J. Phys: Condensed Matter 5, 2055 (1993).Google Scholar
[3] Cebollada, A. et al. , Phys. Rev. B 39, 9726 (1989).Google Scholar
[4] Miguel, J. J. de et al. J. Magn. Magn. Mat. 93, 1 (1991).Google Scholar
[5] Qiu, Z. et al. ., Phys. Rev. B 46, 8659 (1992).Google Scholar
[6] Johnson, M. T. et al. , Phys. Rev. Lett. 68, 2688 (1992).Google Scholar
[7] Parkin, S. S. P., Bhadra, R., and Roche, K. P., Phys. Rev. Lett. 66, 2152 (1991).Google Scholar
[8] Mosca, D. H. et al. , J. Magn. Magn. Mat. 94, LI (1991).Google Scholar
[9] Johnson, M. T. et al. , Phys. Rev. Lett. 69, 969 (1992).Google Scholar
[10] Harp, G. R. et al. , Phys. Rev. B 47, 8721 (1993).Google Scholar
[11] Kief, M. T. and Egelhoff, J. W. F., Phys. Rev. B 47, 10785 (1993).Google Scholar
[12] Schreyer, A. et al. , Phys. Rev. B 47, 15334 (1993).Google Scholar
[13] Figuera, J. de la, Prieto, J.E., Ocal, C. and Miranda, R., Phys. Rev. B 47, 13043 (1993).Google Scholar
[14] Figuera, J. de la et al. (unpublished).Google Scholar
[15] Camarero, J. et al. , Phys. Rev. Lett. 73, 2448 (1994).Google Scholar
[16] Whitney, T. M. et al. , Science 261, 1316 (1993).Google Scholar
[17] Piraux, L. et al. , Appl. Phys. Lett. 65, 2484 (1995).Google Scholar
[18] Blondel, A. et al. , Appl. Phys. Lett. 65, 3019 (1995).Google Scholar
[19] Figuera, J. de la et al. , Appl. Phys. Lett. 66, 1006 (1995).Google Scholar
[20] Poensgen, M. et al. , Surf. Sci. 274, 430 (1992).Google Scholar
[21] Elmers, H. J. et al. , Phys. Rev. Lett. 73, 898 (1994).Google Scholar
[22] Schneider, C. M. et al. , Phys. Rev. Lett. 64, 1059 (1990).Google Scholar