Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T08:22:26.327Z Has data issue: false hasContentIssue false

Atomic Scale Simulations of Arsenic Ion Implantation and Annealing in Silicon

Published online by Cambridge University Press:  21 February 2011

M.-J. Caturla
Affiliation:
Lawrence Livermore National Laboratory, L-268, Livermore, CA-94550
T. Díaz de la Rubia
Affiliation:
Lawrence Livermore National Laboratory, L-268, Livermore, CA-94550
M. Jaraiz
Affiliation:
Dept. E. y Electrónica, Universidad de Valladolid, Valladolid, Spain
G.H. Gilmer
Affiliation:
AT&T Bell Laboratories, Rm. 1E332, 600 Mountain Ave., Murray Hill, NJ-07974
Get access

Abstract

We present results of multiple-time-scale simulations of 5, 10 and 15 keV low temperature ion implantation of arsenic on silicon (100), followed by high temperature anneals. The simulations start with a molecular dynamics (MD) calculation of the primary state of damage after l0ps. The results are then coupled to a kinetic Monte Carlo (MC) simulation of bulk defect diffusion and clustering. Dose accumulation is achieved considering that at low temperatures the damage produced in the lattice is stable. After the desired dose is accumulated, the system is annealed at 800 °C for several seconds. The results provide information on the evolution for the damage microstructure over macroscopic length and time scales and affords direct comparison to experimental results. We discuss the database of inputs to the MC model and how it affects the diffusion process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Handbook of Jon Implantation, Ed. by Ziegler, J.F. (North Holland, Amsterdam, 1992)Google Scholar
2 Motooka, T. and Holland, O.W., Apply. Phys. Lett. 61 (1992) 3005 Google Scholar
3 Jones, K.S., Robinson, H.G., Listebarger, J., Chen, J., Liu, J., Herner, B., Park, H., Law, M.E., Sieloff, D., Slinkman, J. A., Nucl. Instrum. and Methods, B96 (1995) 196 Google Scholar
4 Eaglesham, D.J., Stolk, P. A., Gossman, H.-J., and Poate, J.M., Apply. Phys. Lett. 65 (1994) 2305 Google Scholar
5 Stolk, P. A., Gossmann, H.J., Eaglesham, D.J., Poate, J.M., Nucl. Instrum. and Methods, B96 (1995) 187 Google Scholar
6 Schreutelkamp, R. J., Custer, J.S., Liefting, J.R., Lu, W.X. and Saris, F.W., Materials Science Reports, 6 (1991)Google Scholar
7 Zhang, L.H., Jones, K.S., Chi, P.H., Simons, D.S., Apply. Phys. Lett 67 (1195) 2025 Google Scholar
8 Packan, P.A. and Plummer, J.D., Apply. Phys. Lett 56 (1990) 1787 Google Scholar
9 Jaraiz, M., Gilmer, G.H., Poate, J. M. and Diaz de la Rubia, T., unpublished.Google Scholar
10 Stillinger, F.H. and Weber, T.A., Phys, Rev. B31 (1985) 5262 Google Scholar
11 Zhu, J., Yang, L., Mailhiot, C., Diaz de la Rubia, T., Gilmer, G.H., Nucl. Instrum. and Methods B, in pressGoogle Scholar
12 Gilmer, G.H., Diaz de la Rubia, T., Stock, D. and Jaraiz, M., Nucl. Instrum. and Methods B102 (1995) 247 Google Scholar
13 Biersack, J.P. and Ziegler, J.F., Nucl. Instrum. and Methods. 194 (1982) 93 Google Scholar
14 Gärtner, K., Nucl. Instrum. and Methods B102 (1995) 183 Google Scholar
15 Lindhard, J. and Sharff, M., Phys. Rev. 124,128 (1961)Google Scholar
16 PVM3 Users Guide and Reference Manual. ORNL/TM-12187, May 1993 Google Scholar
17 Diaz de la Rubia, T., Averback, R.S., Benedek, R. and King, W.E., Phys. Rev. Lett. 59 (1987) 1930 Google Scholar
18 Sigmund, P., Apply. Phys. Lett., 14 (1969) 114 Google Scholar
19 Caturla, M.-J., Diaz de la Rubia, T., Marques, L.A., Gilmer, G.H., unpublished.Google Scholar
20 Diaz de la Rubia, T. and Gilmer, G.H., Phys. Rev. Lett. 74 (1995) 2507 Google Scholar