Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T00:01:15.979Z Has data issue: false hasContentIssue false

Atomic Structure of a Polar Ceramic/Metal Interface: {222}MgO/Cu

Published online by Cambridge University Press:  10 February 2011

R. Benedek
Affiliation:
Northwestern University, Evanston, IL
D. A. Shashkov
Affiliation:
Northwestern University, Evanston, IL
D. N. Seidman
Affiliation:
Northwestern University, Evanston, IL
D. A. Muller
Affiliation:
Cornell University, Ithaca, NY
J. Silcox
Affiliation:
Cornell University, Ithaca, NY
M. F. Chisholm
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN
L. H. Yang
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
Get access

Abstract

{222}MgO/Cu is one of the most extensively characterized ceramic/metal interfaces, in view of the atom-probe field-ion-microscopy, Z-contrast scanning-transmission-electron-microscopy (STEM), and spatially-resolved electron-energy-loss-spectroscopy (EELS) measurements performed by the present authors, as well as the high-resolution electron microscopy (HREM) of this system by others. Atomistic simulations with local density functional theory (LDFT) and molecular dynamics (MD) have been performed to gain additional insight into the structure of this interface. This presentation describes an interface interatomic potential for {222}MgO/Cu derived from LDFT total energy calculations, and its application to structural properties, including the terminating species, the absence of dislocation standoff, and the symmetry of the interfacial dislocation network.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rühle, M. et al., eds., Acta Metall. Mater. S40 (1992).Google Scholar
2. Shashkov, D. A. and Seidman, D. N., Phys. Rev. Lett. 75, 268 (1995).Google Scholar
3. Shashkov, D. A., Chisholm, M. F., and Seidman, D. N., unpublished;Google Scholar
Shashkov, D. A., Ph. D. thesis, Northwestern University, 1997.Google Scholar
4. Muller, D. A., Shashkov, D. A., Benedek, R., Yang, L. H., Silcox, J., and Seidman, D. N., submitted for publication, 1997.Google Scholar
5. Vellinga, W. P. and De Hosson, J. Th. M., Mat. Sci. Forum 207–209, 361 (1996);Google Scholar
De Hosson, J. Th. M., Vellinga, W. P., Zhou, X. P., and Vitek, V., in Stability of Materials, edited by Gonis, A., et al. (Plenum, New York, 1996);Google Scholar
Vellinga, W. P., De Hosson, J. Th. M., and Vitek, V., Acta. Mater. 45, 1525 (1997).Google Scholar
6. Lu, P. and Cosandey, F., Ultramicroscopy 40, 271 (1992);Google Scholar
Chen, F. R. et al., Ultramicroscopy. 54, 179 (1994).Google Scholar
7. Finnis, M. W., J. Phys.: Condens. Matter 8, 5811 (1996).Google Scholar
8. Purton, J., Parker, S. C., and Bullett, D. W., J. Phys.: Condens. Matter 9, 5709 (1997).Google Scholar
9. Li, J. G., Mater. Chem. and Phys. 47, 126 (1997).Google Scholar
10. Jang, H., Seidman, D. N., and Merkle, K. L., Interface Sci. 1, 61 (1993).Google Scholar
11. Benedek, R., Seidman, D. N., and Yang, L. H., Microsc. Microanal. 3, 333 (1997).Google Scholar
12. Shashkov, D. A., Muller, D. A., and Seidman, D. N., unpublished.Google Scholar
13. Benedek, R., Minkoff, M., and Yang, L. H., Phys. Rev. B54, 7697 (1996).Google Scholar
14. Smith, J. R., Hong, T., and Srolovitz, D. J., Phys. Rev. Lett. 72, 4021 (1994).Google Scholar
15. Benedek, R., Seidman, D. N., Minkoff, M. and Yang, L. H., submitted for publication.Google Scholar
16. Jang, H., Shashkov, D. A., and Seidman, D. N., unpublished.Google Scholar
17. Chan, D. K., Seidman, D. N., and Merkle, K. L., Phys. Rev. Lett. 75, 1118 (1995);Google Scholar
Chan, D. K., Seidman, D. N., and Merkle, K. L., Appl. Surf. Sci. 94/95, 409 (1996).Google Scholar
18. Mader, W. and Knauss, D., in ref. 1, p 207.Google Scholar