Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T01:51:20.714Z Has data issue: false hasContentIssue false

Band alignment at amorphous/crystalline silicon hetero-interfaces

Published online by Cambridge University Press:  27 June 2011

L. Korte
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Institut Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin, Germany
T. F. Schulze
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Institut Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin, Germany
C. Leendertz
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Institut Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin, Germany
M. Schmidt
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Institut Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin, Germany
B. Rech
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Institut Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin, Germany
Get access

Abstract

We present an investigation of the band offsets in amorphous/crystalline silicon heterojunctions (a-Si:H/c-Si) using low energy photoelectron spectroscopy, ellipsometry and surface photovoltage data. For a variation of deposition conditions that lead to changes in hydrogen content and the thereby the a-Si:H band gap by ∼180 meV, we find that mainly the conduction band offset ΔEV varies, while ΔEC stays constant within experimental error. This result can be understood in the framework of charge neutrality (CNL) band lineup theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sakata, H. et al. ., Proc. 25th Eur. Photovolt. Sol. Ener. Conf. (WIP, 2010) pp. 1102–5.Google Scholar
2. Korte, L. and Schmidt, M.. J. Appl. Phys. 109, 063714(2011).10.1063/1.3559296Google Scholar
3. Schulze, T. F., Ruske, F., Rech, B., and Korte, L., Phys. Rev. B, in press (2011).Google Scholar
4. Tersoff, J., Phys. Rev. B 30, 4874 (1984).10.1103/PhysRevB.30.4874Google Scholar
5. Powell, M. J. and Deane, S. C., Phys. Rev. B 48, 10815 (1993).10.1103/PhysRevB.48.10815Google Scholar
6. Pflug, A., RIG-VM simulation system, Fraunhofer IST, http://www.simkopp.de/rvm/.Google Scholar
7. Sebastiani, M. et al. . Phys. Rev. Lett. 75, 3352 (1995).10.1103/PhysRevLett.75.3352Google Scholar
8. Korte, L. and Schmidt, M., J. Non-Cryst. Sol. 354, 2138 (2008).10.1016/j.jnoncrysol.2007.09.010Google Scholar
9. Cahen, D. and Kahn, A., Adv. Mat. 15 271 (2003).10.1002/adma.200390065Google Scholar
10. Winer, K. and Ley, L.. Phys. Rev. B 36, 6072 (1987).10.1103/PhysRevB.36.6072Google Scholar
11. Angermann, H. et al. ., phys. stat. sol. (c) 8, 879 (2011).10.1002/pssc.201000236Google Scholar
12. Mönch, W., Electronic Properties of Semiconductor Interfaces. Springer, Berlin, 2004).10.1007/978-3-662-06945-5Google Scholar
13. Cardona, M. and Christensen, N.E., Phys. Rev. B 35, 6182 (1987).10.1103/PhysRevB.35.6182Google Scholar
14. Flores, F., Munoz, A., and Duran, J.C., Appl. Surf. Sci. 4142, 144 (1989).Google Scholar
15. Leendertz, C. et al. ., Proc. 25th Eur. Photovolt. Sol. Ener. Conf. (WIP, 2010) pp. 1377–81.Google Scholar
16. Schulze, T. F. et al. ., Appl. Phys. Lett. 96, 252102 (2010).10.1063/1.3455900Google Scholar