No CrossRef data available.
Published online by Cambridge University Press: 21 February 2011
Au/n-Si Schottky barrier (SB) incorporated by hydrogen has a 0.13 eV lower SB height (SBH) than that without hydrogen incorporation. For the hydrogen-containing SB, zero bias annealing (ZBA) decreases the SBH while reverse bias annealing (RBA) increases it. Besides, the ZBA and RBA cycling experiments reveal a reversible change of the SBH with in at least three cycles. The higher annealing temperature of RBA results in higher SBH. We interpret the above experimental facts as that hydrogen has an effect on metal-semiconductor interface states and then on the SBH, and both the bias on SB and temperature of annealing can influence the hydrogen effects on metal-semiconductor interface states.