Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T18:12:17.756Z Has data issue: false hasContentIssue false

Bonding, Defects, And Defect Dynamics In The Sic-SiO2 System

Published online by Cambridge University Press:  21 March 2011

S. T. Pantelides
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
R. Buczko
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
M. Di Ventra
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
S. Wang
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
S.-G. Kim
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
S. J. PennycooK
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
G. Duscher
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
L. C. Feldman
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
K. Mcdonald
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
R. K. Chanana
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235
R. A. Weller
Affiliation:
Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235
J. R. Williams
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849
G. Y. Chung
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849
C. C. Tin
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849
T. Isaacs-Smith
Affiliation:
Department of Physics, Auburn University, Auburn, AL 36849
Get access

Abstract

This paper presents a review of new results obtained by a combination of first-principles theory, Z-contrast imaging, and electron-energy-loss spectroscopy in the context of a broader experimental/theoretical program to understand and control the atomic-scale structure of SiCSiO2 interfaces. The ultimate purpose is to achieve low interface trap densities for device applications. Results are given for global bonding arrangements in comparison with those of the Si-SiO2 interface, the mechanism of the oxidation process, the nature of possible interface defects and their passivation by N and H, and the formation and dissolution of C clusters in SiO2 during oxidation and reoxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lipkin, L. A. and Palmour, J. W., ”Improved oxidation procedures for reduced SiO2 /SiC defects”, J. Elec. Mater. 25, 909 (1996).Google Scholar
2 Williams, J. R., Chung, G. Y., Tin, C. C., McDonald, K., Farmer, D., Chanana, R. K., Weller, R. A., Pantelides, S. T., Holland, O. W., Das, M. K., Lipkin, L. A., and Feldman, L. C., ”Nitrogen passivation of the interface states near the conduction band edge in 4H silicon carbide”, this volume (2001).Google Scholar
3 Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D., ”Iterative minimization techniques for ab-initio total-energy calculations - molecular-dynamics and conjugate gradients”, Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
4 Pennycook, S. J. and Jesson, D. E., ”High-resolution incoherent imaging of crystals”, Phys. Rev. Lett. 64, 938 (1990).Google Scholar
5 Duscher, G., Buczko, R., Wang, S., Kim, S. G., DiVentra, M., Pennycook, S. J., McDonald, K., Weller, R. A., Feldman, L. C., and Pantelides, S. T., ”The Effect of Carbon on the Electrical Structure of SiC-SiO2 interfaces”, Appl. Phys. Lett., (submitted) (2001).Google Scholar
6 Afanasev, V. V., Bassler, M., Pensl, G., and Schulz, M., ”Intrinsic SiC-SiO2 interface states”, Phys. Stat. Sol. a 162, 321 (1997).Google Scholar
7 Buczko, R., Pennycook, S. J., and Pantelides, S. T., ”Bonding Arrangements at the Si-SiO2 and SiC-SiO2 Interfaces and a Possible Origin of their Contrasting Properties”, Phys. Rev. Lett. 84, 943 (2000).Google Scholar
8 Bernhardt, J., Schardt, J., Starke, U., and Heinz, K., ”Epitaxially ideal oxide–semiconductor interfaces: Silicate adlayers on hexagonal (0001) and (000) SiC surfaces”, Appl. Phys. Lett. 74, 1084 (1999).Google Scholar
9 Pantelides, S. T., ”Electronic excitation energies and the soft-X-ray absorption spectra of the alkali halides”, Phys. Rev. B 11, 2391 (1975).Google Scholar
10 Weng, X., Rez, P., and Sankey, O. F., ”Pseudo-atomic-orbital band theory applied to. Electron-energy-loss near-edge structures”, Phys. Rev. B 40, 5694 (1989).Google Scholar
11 Garvie, L. A. J., Rez, P., Alvarez, J. R., Buseck, P. R., Craven, A. J., and Brydson, R., ”Bonding in alpha-quartz (SiO2): A view of the unoccupied states”, Amer. Mineralogist 85, 732 (2000).Google Scholar
12 Neaton, J. B., Muller, D. A., and Ashcroft, N. W., ”Electronic properties of the Si/SiO2 interface from frist principles”, Phys. Rev. Lett. 85, 1298 (2000).Google Scholar
13 Buczko, R., Duscher, G., Pennycook, S. J., and Pantelides, S. T., ”Excitonic effects in core excitation spectra of semiconductors”, Phys. Rev. Lett. 85, 2168 (2000).Google Scholar
14 Duscher, G., Buczko, R., Pennycook, S. J., and Pantelides, S. T., ”Core-hole effects on energy-loss near-edge structure”, Ultramicrosc. in press(2001).Google Scholar
15 Ramamoorthy, M. and Pantelides, S. T., ”Atomic dynamics and defect evolution during oxygen precipitation and oxidation of silicon”, Appl. Phys. Lett. 75, 115 (1999).Google Scholar
16 DiVentra, M. and Pantelides, S. T., ”Atomic-scale Mechanisms of Oxygen Precipitation and Thin-film Oxidation of SiC”, Phys. Rev. Lett. 83, 1624 (1999).Google Scholar
17 DiVentra, M. and Pantelides, S. T., ”Oxygen, stability, diffusion and precipitation in SiC: implications for thin-film oxidation”, J. Electron. Mater. 29, 353 (2000).Google Scholar
18 DiVentra, M. and Pantelides, S. T., unpublished (2000).Google Scholar
19 Chung, G. Y., Tin, C. C., Williams, J. R., McDonald, K., Ventra, M. D., Weller, R. A., Pantelides, S. T., and Feldman, L. C., in Materials Research Society, San Francisco, CA, 2000), Vol. in press. Google Scholar
20 Wang, S., DiVentra, M., Kim, S.-G., and Pantelides, S. T., ”Atomic-scale dynamics of the formation and dissolution of carbon clusters in SiO2”, to be published (2001). H3.3.9Google Scholar