Skip to main content
×
Home

Boride-Based Materials for Energetic Applications

  • Michael L. Whittaker (a1), Raymond A. Cutler (a2) and Paul E. Anderson (a3)
Abstract
ABSTRACT

Metal borides (AlB2, MgB2, Mg0.5Al0.5B2, AlB12, SiB6 and MgAlB14) and boron carbide (B4C) reacted with Al were compared to B, Mg, Al, Mg-Al and Si as potential energetic fuel additives. Stoichiometric physical mixtures of powders corresponding to unreacted boride compounds (Al+2B, Mg+2B, Mg-Al+2B, Al+12B, Si+6B, Mg-Al+14B, and B4C+2Al) were also investigated in comparison to the compounds. Submicron boron was used, which resulted in very fine particle sizes for all materials studied. It was demonstrated that boride compounds were less sensitive to low-temperature oxidation in flowing air than physical mixtures or metallic fuels. Compounds with high mole fractions of boron were generally less sensitive, but their high temperature oxidation behavior showed no improvement over boron. Cylinder expansion testing of MgAlB14 exposed its poor performance in an energetic mixture. However, aluminum and magnesium diborides (AlB2, MgB2 and Mg0.5Al0.5B2) also had relatively low sensitivity and exhibited mechanisms to increase the rate of boron oxidation at high temperatures, showing promise as insensitive high-energy-density fuel additives. Detonation calorimetry of mixtures with AlB2 or Al+2B suggested that the AlB2 mixture released approximately 50% more heat per gram than Al +2B and underwent complete reaction. These results warrant further testing of the diboride compounds in energetic formulations. Due to the high cost of boron and acceptable performance of B4C-Al mixtures, B4C should also be investigated as a lower-cost alternative to boron.

Copyright
References
Hide All
1.Yeh C. L. and Kuo K. K., Prog. Energy Comb. Sci., 22[6] 511–41 (1996).
2.Hsia H. T.-S., AFRTL-TR-71–80 (June 1971).
3.Mitani T. and Izumikawa M., J. Spacecraft 28[1] 79–84 (1991)
4.Flower P.Q., Steward P.A., Bates L.R., Shakesheff A.J., and Reip P.W., Insensitive Munitions European Manufacturers Group (2006).
5.Sabatini J. J., Poret J. C., and Broad R. N., Angew. Chem. Int. Ed., 50 4624–25 (2011).
6.Whittaker M. L., Cutler R. A., Campbell J. and LaSalvia J., Ceram. Eng. Sci. Proc., 31[7] 239–250, (2010)
7.Eisenreich N., Fietzek H., Juez-Lorenzo M. d.M., Kolarik V., Koleczko A., and Weiser V., Propellants Explos. Pyrotech. 29[3] (2004).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 176 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th November 2017. This data will be updated every 24 hours.