Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-20T01:05:34.778Z Has data issue: false hasContentIssue false

Bulk Homogeneity of Iron Doped InP

Published online by Cambridge University Press:  15 February 2011

J. Jimenez
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
M. Avella
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
M. A. Gonzalez
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
P. Martin
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
L. F. Sanz
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
M. Chafai
Affiliation:
Física de la Materia Condensada, ETS Ingenieros Industriales, 47011 Valladolid, Spain
Get access

Abstract

Fe- doped InP is studied by a spatially resolved photocurrent technique, probing electronic transitions related to the iron impurity levels. This scanning technique allows to get information on bulk homogeneity regarding to the electrically active iron impurity distribution. The presence of doping growth striations is revealed with a high sensitivity. Also results about the local photocurrent at the Cottrell atmospheres of the dislocations are shown. The role played by other defect levels in the photocurrent contrast is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.- For a review see: Bishop, S.G. in “Deep Centers in Semiconductors”, ed. Pantelides, S.T. (Gordon and Breach, N.Y. 1985) chp 7.Google Scholar
2.- Müller, G.;Phys.Scripta T 35,201 (1991)Google Scholar
3.- Weyher, J.L., Ven, J. Van de; J.Cryst.Growth 78,191 (1986)Google Scholar
4.-Nakajima, M., Katsumata, T., Teroshima, K., Ishida, K.; Jap.J.Appl.Phys. 24,265 (1985)Google Scholar
5.-Carlson, D.J.,Bliss, D.F.; Indium Phosphide and Related Materials (IEEE,New Port Rodhe Island 1992) p515 Google Scholar
6.-Mita, I.,Sugata, S.,Tsukada, N.;Appl.Phys.Lett 43, 841 (1983)Google Scholar
7.-Jimenez, J., Gonzalez, M.A., Sanz, L.F., Angulo, L.R., Bonnafé, J.; Semicond.Sci.Technol. 7 202(1992)Google Scholar
8.-Martin, P.,Jimenez, J.,Gonzalez, M.A.,Sanz, L.F.,Chafai, M., Avella, M.;Matter.Sci.Eng.B. (to be published)Google Scholar
9.-Tapster, P.R., Skolnick, M.S., Humphreys, R.G., Dean, P.J., Cockayne, B.,Ewan, W.T. Mac; J.Phys.C: Sol.St.Physics 14, 5069 (1981)CrossRefGoogle Scholar
10.- Thonke, K.,Pressel, K.;Phys.Rev.B 44, 13418 (1991)Google Scholar
11.-Takanohashi, T.,Nakajima, N.;J.Appl.Phys. 65, 3993 (1989)Google Scholar
12.- Jimenez, J.,Gonzalez, M.A.,Carbayo, V.,Bonnafé, J.;Phys.Stat.Sol a77, k69 (1983)Google Scholar
13.-Fung, S.,Nicholas, R.J.,Stradling, R.A.;J.Phys.C:Sol.Stat.Physics 12, 5145 (1979)Google Scholar
14.-Longere, S.I., Schohe, K., Krawczyk, S.K., Coquille, R., L'Haridon, H., Favennec, P.N.; J.Appl.Phys. 68, 755 (1990)Google Scholar
15.-Tower, J.P.,Tobin, R.,Pearah, P.J.,Ware, R.M.;J.Cryst.Growth 114, 665 (1991)CrossRefGoogle Scholar
16.- Fang, Z.Q.,Look, D.C.,Zhao, J.H.;Indium Phosphide and Related Materials (IEEE, New Port Rodhe Island 1992) 634 Google Scholar