Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T15:31:49.326Z Has data issue: false hasContentIssue false

Casimir Forces between ThermallyActivated Nanocomposites

Published online by Cambridge University Press:  15 March 2011

Raúl Esquivel-Sirvent
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, México, DF, 04510, México
Carlos Villarreal
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, México, DF, 04510, México
Cecilia Noguez
Affiliation:
Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, México, DF, 04510, México
Get access

Abstract

We present a theoretical study of the modification of Casimir forces between nanocomposite slabs that exhibit a metal-dielectric transition. In particular, we consider slabs made of VO2 precipitates in sapphire, whose effective dielectric function is calculated within a mean field approximation. The results for the Casimir force as a function of the separation of the slabs, show that at a fixed separation the magnitude of the force changes as temperature increases from 300 K to 355 K. The possible applications of these results to Casimir devices is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Casimir, H. B. G., Proc. Kon. Ned. Akad. Wet. 51, 793 (1948); G. Plunien, B. Muller and W. Greiner, Phys. Rep. 134, 87 (1986); L. S. Brown and G. J. Maclay, Phys. Rev. 184, 1272 (1969); S. Hacyan, R. Jáuregui, F. Soto, and C. Villarreal, J. Phys. A 23, 2401 (1990).Google Scholar
2. Larraza, A., Holmes, C. D., Susbilla, R. T. and Denardo, B., J. Acoust. Soc. Am. 103, 2267 (1998).Google Scholar
3. Lamoreaux, S. K., Phys. Rev. Lett. 78, 5 (1997).Google Scholar
4. Mohideen, U. and Roy, Anushree, Phys. Rev. Lett. 81, 4549 (1998); B. W. Harris, F. Chen, and U. Mohideen, Phys. Rev. A 62, 052109 (2000).Google Scholar
5. Chan, H. B., Aksyuk, V. A., Kliman, R. N., Bishop, D. J. and Capasso, F., Science 291, 1942 (2001).Google Scholar
6. Lifshitz, E. M., Sov. Phys. JETP 2, 73 (1956).Google Scholar
7. Kupiszewska, D. and Mostowski, J., Phys. Rev. A, 41, 4636 (1990); D. Kupiszewska, Phys. Rev. A, 46, 2286 (1992); R. Matloob, A. Keshavaraz, and D. Sedighi, Phys. Rev. A, 60, 3410 (1999).Google Scholar
8. Serry, F. M., Walliser, D. and Maclay, J., J. Appl. Phys. 84, 2501 (1998).Google Scholar
9. Maclay, J., in Proceedings of STAIF-99 (Space Technology and Applications Internati onal Forum-1999, Albuquerque, NM, January, 1999), edited by Genk, M.S. El, AIP Conference Proceedings 458, American Institute of Physics, New York, 1999.Google Scholar
10. Esquivel-Sirvent, R., Villarreal, C., and Cocoletzi, G.H., Phys. Rev. A (2001).Google Scholar
11. Pinto, F., Phys. Rev. B 60, 14740 (1999).Google Scholar
12. Gea, L. A., and Boatner, L. A., Appl. Phys. Lett., 68, 3081 (1996); L.A. Gea, J.D. Budai, and L.A. Boatner, J. Mater. Res. 14, 2602 (1999).Google Scholar
13. Barrera, R. G., Noguez, C., and Anda, E.V., J. Chem. Phys. 96, 1574 (1992).Google Scholar
14. Verleur, H. W., Barker, A.S., and Berglund, C. N., Phys. Rev. 172, 788 (1968).Google Scholar