Skip to main content
×
×
Home

Characterization and Evaluation of the Integrity of the Onshore Pipelines

  • S. L. Hernández (a1), M. Adame (a1), J. Gonzalez (a1), D. Padilla (a1) and A. Contreras (a2)...
Abstract

The pipelines are the main transport and distribution system of production in the oil industry, which are subject to environmental and operational conditions which are not favorable for the operation of the pipelines and sometimes represent the risk of accidents and high economic losses. The evolution of risk begins with a systematic search of possible threats to the integrity of the pipeline. The identification of potential threats should not be limited to known risk categories reviewed, but must complete the steps to find new and unique expressions of risk and the study of particular cases. Thus, the importance of a comprehensive risk assessment of the transmission pipeline is crucial. In this paper an integrity assessment for corrosion damages in pipelines was developed through a methodology based on risk analysis to estimate the propagation rate on the time, the size, location and number of damages. To perform this study a data obtained from smart pig runs and an artificial neural network (ANN) model with retro propagation was used. From the data obtained from launching smart pigs on the pipeline it was carried out the training of the neural network, later on it was applied the network previously trained to get the predictions of damages on the pipeline, considering that pipeline did not have any maintenance.

Copyright
References
Hide All
1. Espinosa, P. Tesis de Maestría: Desarrollo de una metodología para inspección, evaluación y mantenimiento de líneas terrestres, 29–64 (2002).
2. Yoon, J. E., Lee, J. J., Kim, T. S. and Sohn, J. L., Journal of Mechanical Science and Technology, 22, 2520 (2008).
3. Lee, D.W., Hong, S.H., Cho, S.S., Journal of Mechanical Science and Technology, 19, 1393 (2005).
4. Manfredi, C. and Otegui, J. L., Engineering Failure Analysis, 9, 495 (2002).
5. Benmoussat, A. and Hadjel, M., Journal of Corrosion Science and Engineering, 7, 1 (2005).
6. Qiao, L. J., Luo, J. L., Journal of Materials Science Letters, 16, 516 (1997).
7. Pan, B. W., Peng, X., Chu, W. Y., Su, Y.J. and Qiao, L.J., Materials Science and Engineering A 434, 76 (2006).
8. Liu, Z. Y., Li, X.G., Du, C.W., Zhai, G.L. and Cheng, Y. F., Corrosion Science 50, 2251 (2008).
9. Bulger, J. and Luo, J. Internacional Pipeline Conference (IPC), ASME (2000), 947952.
10. NRF-030 PEMEX “Diseño, Construcción, Inspección y Mantenimiento de Ductos Terrestres para Transporte y Recolección de Hidrocarburos” 1–109, (2006).
11. Sanz-Molina, M. del Brío B. y A., Redes Neuronales y sistemas difusos, 399 (2001).
12. Hagan, M. T., Demuth, H. B. and Beal, M. Neural Network Design, PWS Publishing Company USA, (1995).
13. Adame, M., González, D., Hernández, D. Padilla y L., 5° Congreso Internacional de Metodología de la Ciencia y de la Investigación para la Educación. “Elección de un modelo de redes neuronales artificiales con base en su bondad de ajuste”, Villa Hermosa Tabasco, México, (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 38 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 14th August 2018. This data will be updated every 24 hours.