Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-20T02:24:39.410Z Has data issue: false hasContentIssue false

Characterization of Dendrimer-Based Nanocomposites by Saxs and Sans

Published online by Cambridge University Press:  10 February 2011

N. C. Beck Tan
Affiliation:
Army Research Laboratory, Materials Div., Bldg. 4600, AMSRL-WM-MA, APG, MD 21005
L. Balogh
Affiliation:
Michigan Molecular Institute, Midland, MI 48640;
S. F. Trevino
Affiliation:
Army Research Laboratory, Materials Div., Bldg. 4600, AMSRL-WM-MA, APG, MD 21005 National Institute of Standards & Technology, Gaithersburg, MD 20899;
D. A. Tomalia
Affiliation:
Michigan Molecular Institute, Midland, MI 48640;
J. S. Lin
Affiliation:
Oak Ridge National Laboratories, Oak Ridge, TN 37831
Get access

Abstract

Dendritic polymers have been used as soluble templates/unimolecular reactors from which nano-clusters of inorganic compounds were synthesized. These organic/inorganic, dendrimerbased hybrid species or “nanocomposites” display unusual properties, i.e., their solubility is deterrnined by the properties of the dendrimer molecules. Since it has been established that there is no covalent bond between the dendrimer host and the inorganic guest, these observations suggest that the guests are physically and spatially restricted by the dendrimer shell. However, this structure has not been verified. In this investigation a preliminary understanding of the physical structure of these dendrimer-based nanocomposites was sought. A model system of PAMAM dendrimer-copper sulfide nanocomposites was studied in various stages of its formation using a combination of small angle X-ray and neutron scattering experiments. The results suggest that little perturbation of the dendritic species occurs on complexation, but indicate that a secondary supermolecular aggregation phenomena occurs within nanocomposite solutions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ottaviani, M. F., et. al., J. Phys. Chem. B, 101, 158, (1997).10.1021/jp962857hGoogle Scholar
2 , Jensen, et. al., Science, 266, 1226, (1994). Esfand, et. al., Pharm. Sci., 2, 157, (1996). Sayed-Sweet, Y., et.al., J. Mater. Chem., 9, 1199, (1997). Cooper, et. al., Nature (London), 389, 368, (1997). Dvornic, P. R.; Tomalia. D. A.; Cur. Opin. Colloid & Interface Sci., 1, 221, (1996).10.1126/science.266.5188.1226Google Scholar
3 Balogh, L., et. al., Proc. of ACS PMSE, 77, 118, (1997).Google Scholar
4 Balogh, L.; Tomalia, D. A., US Patent pending. Balogh, L.; Tomalia, D. A.; JACS, in review.Google Scholar
5 , Constable, et. al.; Chem. Comm., 15, 1821, (1996). Serroni, S., et. al. Angew. Chem. Int. Ed. Engl. 31, 1493, (1992).Google Scholar
6 Newkome, G. R., et. al., J. Chem. Soc., Chem. Commun., 925, (1993). Thompson, A. M. W. C., J. Chem. Soc., Chem. Commun., 925, (1993). Newkome, G. R., et. al., Chem. Commun. 6, 515, (1997).Google Scholar
7 Tomalia, D. A., et. al., (First SPSJ Int. Polym. Conf., Kyoto, Japan, 1984), 65.Google Scholar
8 Tomalia, D. A., et. al., Angew. Chem. Int. Ed. Engl. 1990, 29, 138.10.1002/anie.199001381Google Scholar
9 Newkome, G. R., et. al., J. Org. Chem. 57, 358, (1992).10.1021/jo00027a061Google Scholar
10 , Newkome, et. al., J. Am. Chem. Soc., 112, 8458, (1990).10.1021/ja00179a034Google Scholar
11 Balogh, L. and Tomalia, D. A., Advanced Materials, in review.Google Scholar
12 Dean, John A., Ed., Lenlange Handbook of Chemistry, 12th Ed., McGraw-Hill, New York, 1978.Google Scholar
13 Wignall, G. D., Lin, J. S. and Spooner, S., J. Appl. Cryst., 23, 241, (1990).10.1107/S0021889890001984Google Scholar
14 Higgins, J. S. and Benoit, H. C. Polymers and Neutron Scattering, Clarendon Press, Oxford, 1994. Feigin, L. A. and Svergun, D. I. Structure Analysis by Small-Angle X-ray and Neutron Scattering, Plenum Press, New York, 1987.Google Scholar
15 Sears, V. F., Neutron News, 3, 26, (1992).10.1080/10448639208218770Google Scholar
16 Bauer, B. J., et. al., Polym. Mater. Sci. Eng. (ACS PMSE Proc.), 71, 704, (1994).Google Scholar
17 Bauer, B. J., et. al., Polym. Mater. Sci. Eng. (ACS PMSE Proc.), 69, 341, (1993).Google Scholar
18 , Bauer, et. al., Polym. Mater. Sci. Eng. (ACS PMSE Proc.), 77, 87, (1997).Google Scholar
19 Amis, E. A., et. al., Polym. Mater. Sci. Eng. (ACS PMSE Proc.), 77, 183, (1997).Google Scholar
20 Prosa, T. J., et. al., J. Polym. Sci. Polym. Phys, 35, 2913, (1997).10.1002/(SICI)1099-0488(199712)35:17<2913::AID-POLB14>3.0.CO;2-A3.0.CO;2-A>Google Scholar
21 Thiyagarajan, P., et. al., J. Mater. Chem., 7, 1221, (1997).10.1039/a700581dGoogle Scholar
22 Bauer, B. J., et. al., Polym. Mater. Sci. Eng. (ACS PMSE Proc.), 67, 428, (1992).Google Scholar
23 Dvornic, P. R. and Tomalia, D. A., Starburst Dendrimers Techology Review, Dendritech, Inc., Midland, MI, 1995.Google Scholar
24 Bosman, A. W., et. al., Chem. Ber./Recueil, 130, 725, (1997).10.1002/cber.19971300608Google Scholar