Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T23:30:09.900Z Has data issue: false hasContentIssue false

Characterization of Hole Traps Generated by Electron Injection in Thin SiO2 Films

Published online by Cambridge University Press:  10 February 2011

Tomasz Brożek
Affiliation:
Electrical Engineering Department, University of California, Los Angeles, CA 90095 Semiconductor Technologies Laboratory, SPS, Motorola, Inc., MD: K21, Austin, TX 78721
Eric B. Lum
Affiliation:
Electrical Engineering Department, University of California, Los Angeles, CA 90095
Chand R. Viswanathan
Affiliation:
Electrical Engineering Department, University of California, Los Angeles, CA 90095
Get access

Abstract

MOS device stability can be significantly affected by charge trapping in the gate oxide, which changes device parameters and causes serious reliability problems in transistors and memory cells. Hole traps, generated by high-field electron injection, are studied in this work in devices with thermal oxides less than 10 nm thick. PMOS transistors, after various doses of positive and negative Fowler-Nordheim injection and post-stress annealing, are subjected to substrate hot hole injection to investigate hole trapping kinetics. Parameters of hole traps, generated under the stress, are studied as a function of gate oxide thickness and electron injection dose.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, C.T., Hot Carrier Design Considerations for MOS Devices and Circuits, Var Nostrand Reinhold, N. Y., 1992.Google Scholar
2. Ma, T.-P. and Dressendorfer, P. V., Ionizing Radiation Effects in MOS Devices and Circuits Wiley, N. Y., 1989.Google Scholar
3. Woltjer, R. et al., IEEE Electron Dev. Lett., 15, p. 427 (1994).Google Scholar
4. Schuegraf, K. F. and Hu, C., J. Appl. Phys, 76, p. 3695 (1994).Google Scholar
5. Haddad, S. et al., IEEE Electron Dev. Lett., 10, p. 117 (1989).Google Scholar
6. Teramoto, A. et al., Proc. IRPS 1996, p. 113.Google Scholar
7. Afanas'ev, V. V. et al., Microelectronic Eng., 28, p. 43 (1995).Google Scholar
8. Brozek, T. and Viswanathan, C. R., Appl. Phys. Lett., 68, p. 1826 (1996).Google Scholar
9. Verwey, J. F., J. Appl. Phys., 44, p. 2681 (1973).Google Scholar
10. Brozek, T., Chan, Y. D., and Viswanathan, C. R. ,. Mat. Res. Soc. Proc, 165, p. 185 (1996).Google Scholar
11. Trombetta, L. P., Feigl, F. J., and Zeto, R. J., J. Appl. Phys., 69, p. 2512 (1991).Google Scholar
12. Khosru, Q. D. M. et al., Appl. Phys. Lett., 63, p. 2537 (1993).Google Scholar
13. Ning, T. H., J. Appl., Phys., 47, p. 1079 (1976).Google Scholar
14. DiMaria, D. J., in The Physics of SiO2 and its Interfaces, Proc. of Int. Topical Conference edited Pantelides, S. T., Yorktown Heights, 1978, p. 160.Google Scholar