Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T01:19:10.882Z Has data issue: false hasContentIssue false

Characterization of New Ionically Conducting Peo-Based Networks by Diffusion, Elasticity Modulus and Ionic Conductivity Measurements

Published online by Cambridge University Press:  25 February 2011

Herve Cheradame
Affiliation:
Laboratoire de Physico-Chimie des Biopolymères, CNRS, 2 rue Henri Dunant, 94320 Thiais, France
F. Desbat
Affiliation:
EFPG, BP 65, 38402 Saint-Martin d'Hères, France
P. Mercier-Niddam
Affiliation:
EFPG, BP 65, 38402 Saint-Martin d'Hères, France
S. Boileau
Affiliation:
Laboratoire de Chimie Macromoléculaire, Collfge de France, 75231 Paris cedex 05, France
Get access

Abstract

Ionically conducting materials containing PEO were prepared from telechelic di(methyl-diethoxy-silane) PEO, synthesized by the hydrosilylation of telechelic diallyl-PEO with methyldiethoxysilane. The network is obtained by the usual sol-gel chemistry. Then, it is filled with LiClO4 by diffusion of the salt and further drying. A comparison is made with the same kind of materials crosslinked using urethane chemistry. Diffusion studies show that the diffusion coefficient of solvent is similar for both types of materials, whilst the ionic conductivity is higher for the networks crosslinked with siloxane bonds. An experiment of diffusion of LiClO4 without solvent showed that this salt has a diffusion coefficient of the order of 2.10-8 cm2.sec-1 at 34°C. The conductivity calculated from this determination is compatible with the mechanism of lithium cation transport by the diffusion of salt molecules. Elasticity modulus measurements show that the salt aggregates are essentially located within the crosslinks at low concentration, but also in the PEO chains for salt concentrations higher than 1 mol/l.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1). Nest, J. F. Le, Gandini, A., Cheradame, H. and Cohen-Addad, J. P., Macromolecules 21, 1117 (1988).Google Scholar
(2). Nest, J. F. Le, Cheradame, H. and Gandini, A., Solid state Ionics 28–30, 1032, (1988).Google Scholar
(3). Cheradame, H., Killis, A., Lestel, L. and Boileau, S., Polymer Preprints 30(N°1), 420 (1989).Google Scholar
(4). Cheradame, H., Niddam-Mercier, P., Faraday Discuss. Chem. Soc. 88, 77 (1989).Google Scholar
(5). Cheradame, H., Souquet, J. L. and Latour, J. M., Mat. Res. Bul. 15, 1173 (1980).Google Scholar
(6). Killis, A., Nest, J. F. Le, Gandini, A. and Cheradame, H., J. Polym. Sci., Polym. Phys. Ed. 19, 1073 (1981).Google Scholar
(7). Adda, Y. and Philibert, S., La Diffusion dans les solides, Presses Universitaires de France, Paris 1966.Google Scholar
(8). Lestel, L., Boileau, S., cheradame, H., Second International Symposium on Polymer Electrolytes, Scrosati, B. Ed., Elsevier Applied Science, London 1990, p.143.Google Scholar
(9). Cheradame, H., LeNest, J. F., Polymer Electrolyte Reviews, MacCallum, J. R. and Vincent, C.A. Eds., Elsevier I.pplied Science, London 1987, p.103.Google Scholar
(10). Cheradame, H., Santarella, J. M., Solid State Ionics, Balkanski, M., Takahashi, T., Tuller, H. L. Eds., North-Holland, Amsterdam 1992, p.423.Google Scholar
(11). Lèveque, M., Nest, J. F. Le, Gandini, A., Cheradame, H., Makromol. Chem., Rapid Commun., 4, 497 (1983).Google Scholar
(12). Killis, A., these de Doctorat d'Etat, Grenoble 20 Nov. 1983.Google Scholar
(13). Cameron, G. G., Harvie, J. L., Ingram, M. D., the Royal Society of Chemistry Faraday Division, General Discussion N°88 (1989), Charge Transfer in Polymeric Systems, p.55.Google Scholar
(14). Lestel, L, Cheradame, H., Boileau, S., Polymer 31, 1154 (1990).Google Scholar
(15). Cheradame, H., LeNest, J. F., Gandini, A., Leveque, M., J. Power Sources 14, 27 (1985).Google Scholar