Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-17T01:24:02.336Z Has data issue: false hasContentIssue false

Characterization Of sic Layer Formed by C Ion Implantation ( ESR And IR Studies)

Published online by Cambridge University Press:  21 February 2011

Y. Show
Affiliation:
Department of Electronics, Faculty of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa, 259–12, Japan
T. Izumi
Affiliation:
Department of Electronics, Faculty of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa, 259–12, Japan
M. Deguchi
Affiliation:
Department of Electronics, Faculty of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa, 259–12, Japan
M. Kitabatake
Affiliation:
Department of Electronics, Faculty of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa, 259–12, Japan
T. Hirao
Affiliation:
Department of Electronics, Faculty of Engineering, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa, 259–12, Japan
Get access

Abstract

Characterization of C ion implanted silicon layers were performed by fourier transformation infrared ( FT-IR ) spectroscopy and electron spin resonance ( ESR ) methods. Microcrystalline β-SiC including amorphous Si are formed in the Si surface region by annealing at 1200 °C following hot ( 450 °C ) implantation. The ESR analysis revealed the presence of two kinds of defect centers in SiC layer formed by implantation, i.e. Si dangling bond ( g=2.0060, ΔHpp=6 Oe) in the amorphous Si and Si dangling bond with C atom neighbors ( g=2.0032, ΔHpp=3 Oe). Heating substrate during implantation prevents the formation of carbon clusters on the Si surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Borders, J. A., Picraux, S. T. and Beezhold, W. ; App1. Phys. Lett., 18, 509 (1971)Google Scholar
[2] Deguchi, M., Yoshida, A., Kitagawa, M. and Hirao, T.; Jpn. J. Appl. Phys., 29, L1493(1990)Google Scholar
[3] P Martin, Baudin, B., Dupuy, M., Ermolieff, A., Olivier, M., Papon, A. M. and Rolland, G.; J. Appl. Phys., 67, 2908 (1990)Google Scholar
[4] Deguchi, M., Kitabatake, M., Hirao, T., Arai, N. and Izumi, T. ; Jpn. J. Appl. Phys., 31, 343 (1992)Google Scholar
[5] Shimizu, T., Kumeda, M. and Kiriyama, Y.; Solid. State. Commun., 37, 699 (1981)Google Scholar
[6] O'Raifertaigh, C., Barklie, R. C., Reeson, K. and Hemment, P. L. F.; Semicond. Sci. Technol., 5, 78 (1990)Google Scholar
[7] Spitzer, W. G., Kleinman, D. A. and Frosch, C. J.;Phys. Rev., 113, 127 (1959)Google Scholar
[8] Spitzer, W. G., Kleinman, D. A. and Frosch, C. J. Phys. Rev., 113, 133 (1959)Google Scholar
[9] Crowder, B. L., Title, R. S., Brodsky, M. H. and Pettit, G. D.; Appl. Phys. Lett., 16, 205 (1970)Google Scholar
[10] Wagner, G. W., Na, B. and Vannice, A.; J. Phys. Chem., 93, 5061 (1989)Google Scholar
[11] Minagawa, H., Vina, R. O., Kadowaki, T., Mizuno, S., Tochihara, H., Hayakawa, K.; Jpn. J. Appl. Phys., 31, L1707(1992)Google Scholar