Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T05:48:22.479Z Has data issue: false hasContentIssue false

Characterization of the Crack Propagation in the API X-52 and API X-65 Steels into Cathodic Protection

Published online by Cambridge University Press:  01 February 2011

A. Aguilar
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48–3, Cuernavaca, Mor., 62251, MEXICO.
R. Esparza
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48–3, Cuernavaca, Mor., 62251, MEXICO.
M.A. Gil
Affiliation:
Centro Universitario de Vinculación, BUAP, Prolongación de la 24 Sur y Av. San Claudio Col. San Manuel Ciudad Universitaria, Puebla 72570, MEXICO.
L.F. Cuahutitla
Affiliation:
Centro Universitario de Vinculación, BUAP, Prolongación de la 24 Sur y Av. San Claudio Col. San Manuel Ciudad Universitaria, Puebla 72570, MEXICO.
E. Rubio-Rosas
Affiliation:
Centro Universitario de Vinculación, BUAP, Prolongación de la 24 Sur y Av. San Claudio Col. San Manuel Ciudad Universitaria, Puebla 72570, MEXICO.
V. Rodríguez-Lugo
Affiliation:
Centro Universitario de Vinculación, BUAP, Prolongación de la 24 Sur y Av. San Claudio Col. San Manuel Ciudad Universitaria, Puebla 72570, MEXICO.
R. Perez
Affiliation:
Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48–3, Cuernavaca, Mor., 62251, MEXICO.
Get access

Abstract

Cathodic protection has been applied for many years as the best method to prevent the corrosion in systems which transported hydrocarbon pipelines. However, it has found the presence of stress corrosion cracking (SCC) in steel pipelines with high concentrations of carbonates and bicarbonates with pH final (9 to 11). The resistance to the stress corrosion cracking of the API X-52 and API X-65 steels was evaluated on compact modified wedge opening specimens (WOL). The specimens were loaded of 95% of the yield strength. The resistance of crack propagation and the corrosion rate were evaluated with different applied potentials (-850 and -650 mV), this with respect to a saturated copper/copper sulfate reference electrode. The used electrolytes were simulated soils (carbonate-bicarbonate solution). Evidence of crack propagation of the API X-52 and API X-65 steels were carried out by scanning electron microscopy. The obtained result showed susceptibility to SCC on specimens with cathodic protection. The cathodic protection applied (-850 mV vs Cu/CuSO4 electrode) decreases considerably the corrosion rate on the evaluated steels. In this work the loaded stress showed to be a very important variable on the susceptibility to SCC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ferreira, C.A.M., Ponciano, J.A.C., Santiago Vaitsman, D., Vidal Pérez, D., Science of the Total Environment 1, 250 (2007).Google Scholar
2. Osella, Ana, Favetto, Alicia, Journal of Applied Geophysics 44, 303 (2000).Google Scholar
3. Delafosse, D., Magnin, T., Engineering Fracture Mechanics 68, 693 (2001).Google Scholar
4. Parking, R.W. Predictive approach to stress corrosion cracking. In: Gangloff RP, Ives MB, Editors. Environment induced cracking of metals, NACE, Houston Texas, 1990. p. 1 Google Scholar
5. Asher, S.L., Leis, B., Colwell, J., and Singh, P.M, Corrosion Science 49, 932 (2007).Google Scholar
6. Novak, S.R. and Rolfe, S.T., J. Mat. 4, 701 (1969).Google Scholar
7. Deans, W.F. and Richards, C.E., J. Testing Eval. 7, 147 (1979).Google Scholar
8. Lu, T. and Luo, J., Corrosion Science 44, 1695 (2002).Google Scholar
9. Perdomo, J.J., Morales, J.L. and Viloria, A., Lusinchi, A.J., Materials Performance 41, 55 (2002).Google Scholar
10. Knott, J.F.: Hydrogen Effects on Material Behavior, Conf. Proc., Moran. WY. 1990,Google Scholar
Moody, N.R. and Thompson, A.W., eds., TMS-ASME, Warrendale, PA, 1990, pp. 661–75.Google Scholar
11. Kentish, P.J., Corrosion 20, 139 (1985).Google Scholar
12. Beavers, J.A., Jaskece, C.E., CORROSION/98, NACE Inter, Houston, TX, 1998, Paper No. 304.Google Scholar
13. Parkins, R.N, CORROSION/2000, NACE Inter, Houston, TX, 2000, Paper No. 363.Google Scholar
14. Chen, W., King, F., Vokes, E., Corrosion 58 (2002) 267.Google Scholar