Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T00:25:31.819Z Has data issue: false hasContentIssue false

Characterization of the Pb1 Interface Defect in Thermal (100)Si/SiO2 by Electron Spin Resonance: 29Si Hyperfine Structure and Electrical Relevance

Published online by Cambridge University Press:  10 February 2011

A. L. Stesmans*
Affiliation:
Department of Physics, University of Leuven, 3001 Leuven, Belgium, Andre.stesmans@fys.kuleuven. ac.be
Get access

Abstract

Optimized electron spin resonance investigation resulted in the observation of the fuill angular dependence of the hyperfine (hi) spectra of the Pb1 interface defect in thermal (100)Si/SiO2, showing that the dominant hf interaction of the associated unpaired electron arises from a single Si site. The defect is identified as a prototype Si dangling bond defect with, much remarkably, the unpaired sp3-orbital pointing closely along a <211> direction at 35.26° with the [100] interface normal. If O is excluded as an immediate part of the defect, the key part of the Pb1 defect is uncovered as a tilted Si3≡Si unit. The incorporation of this defect kernel into a larger defect structure is analyzed within the framework of theoretical insight, suggesting the moiety to be part of a strained interfacial Si-Si dimer. ESR has been combined with electrical measurements to monitor the defect's behavior under thermal treatment, including postoxidation annealing in various ambients. No electrical activity of Pb1 as a detrimental interface trap could be traced, suggesting the defect to be of little relevance for device performance. The results are reviewed and discussed in the light of the defect's characteristic appearance at the (100)Si/SiO2 interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a review on Si/SiO2 defect physics, seethe 13 papers in Semicond. Sci- Technol. 4, 961 (1989).Google Scholar
2.Poindexter, E. and Caplan, P., Prog. Surf. SO. 14, 211 (1983).Google Scholar
3.Helms, R. and Poindexter, E., Rep. Prog. Phys. 57, 791 (1994).Google Scholar
4.Caplan, P., Poindexter, E., Deal, B., and Razouk, R. R., J Appl. Phys. 50, 5847 (1979).Google Scholar
5.Brower, K., Appl. Phys. Lett. 43, 1111 (1983).Google Scholar
6.Poindexter, E., Caplan, P., Deal, B., and Razouk, R., J. Appl. Phys. 52, 879 (1981).Google Scholar
7.Stesmans, A., Appl. Phys. Lett. 48, 972 (1986).Google Scholar
8.Stesmans, A., Phys. Rev. B 48, 2418 (1993); Phys. Rev. Lett. 70, 1723 (1993).Google Scholar
9.Stesmans, A. and Afanas'ev, V. V., J. Vac. Sci. Technol. B 16, 3108 (1998).Google Scholar
10.Stesmans, A. and Afanas'ev, V. V., J. Appl. Phys. 83, 2449 (1998).Google Scholar
11.Aubert, P., Bardeleben, H. J. von, Delmotte, F., Cantin, J. L., and Hugon, M. C., Phys. Rev. B 59, 10677 (1999).Google Scholar
12.Edwards, A. H., in The Physics and Chemistry of SiO2 and the SiO2 interface, edited by Helms, C. R. and Deal, B. E. (Plenum, New York, 1988), p. 271.Google Scholar
13.Ourmazd, A., Taylor, D. W., Rentschler, J. A., and Bevk, J., Phys. Rev. Lett. 59, 213 (1987).Google Scholar
14.Pasquarello, A., Hybertson, M. S., and Car, R., Phys. Rev. Lett. 74, 1024 (1995).Google Scholar
15.Brower, K. L., Z. Phys. Chem. Neue Folge 151, 177 (1987).Google Scholar
16.Cantin, J. L., Schoisswohl, M., Bardeleben, H. J. von, Zoubir, N. H., and Vergnat, M., Phys. Rev. B52, R11599 (1995).Google Scholar
17.Poindexter, E. H., Gerardi, G. J., Rueckel, M.-E, Caplan, P. J., Johnson, N. M., and Biegelsen, D. K., J. Appl. Phys. 56, 2844 (1984).Google Scholar
18.Gerardi, G. J., Poindexter, E. H., Caplan, P. J., and Johnson, N. M., Appl. Phys. Lett. 49, 348 (1986).Google Scholar
19.Poindexter, E. H., Semicond. Sci. Technol. 4, 961 (1989).Google Scholar
20.Chang, S. T., Wu, J. K., and Lyon, S. A., Appl. Phys. Lett. 48, 662 (1986).Google Scholar
21.Sah, C.-T, Sun, J. Y.-C, Tsou, J. J.-T., J. Appl. Phys. 55, 1525, (1984); L. Trombetta, G. Gerardi, D. J. DiMania, and E Tierney, J. Appl. Phys. 64, 2434 (1988).Google Scholar
22.Stathis, J. H. and Cartier, E., Phys. Rev. Lett. 72, 2745 (1994).Google Scholar
23.Brandt, M. S. and Stutzmann, M., Appl. Phys. Lett. 61, 2569 (1992).Google Scholar
24. The physically present Pb sites include both the unpassivated (ESR-active) ones (Pb) and those passivated by H (PbH) or some other means (PbX).Google Scholar
25.Stesmans, A. and Afanas'ev, V. V., Phys. Rev. B 54, R11129 (1996).Google Scholar
26.Stesmans, A., Nouwen, B., and Afanas'ev, V. V., Phys. Rev. B 58, 15801 (1998).Google Scholar
27.Carlos, W. E., Appl. Phys. Lett. 50, 1450 (1987).Google Scholar
28.Gabrys, J. W., Lenahan, P. M., and Weber, W., Microelectr. Eng. 22, 273 (1993).Google Scholar
29.Watkins, G. D. and Corbett, J. W., Phys. Rev. 121, 1001 (1961); 134A, 1359 (1964).Google Scholar
30.Stesmans, A. and Afanas'ev, V. V., Microelectronic Eng. 48, 114 (1999).Google Scholar
31.Stesmans, A. and Afanas'ev, V. V., Phys. Rev. B 57, 10030 (1998).Google Scholar
32.Gray, P. V. and Brown, D. M., Appl. Phys. Lett. 8, 31 (1966).Google Scholar
33.Landsberg, P. T., Recombination in Semiconductors (Cambridge University Press, 1991).Google Scholar
34.Sah, C.-T, Sun, J. Y.-C, Tsou, J. J.-T., J. Appl. Phys. 55, 1525, (1984); L. Trombetta, G. Gerardi, D. J. DiMaria, and E. Tierney, J. Appl. Phys. 64, 2434 (1988).Google Scholar
35.Stathis, J. H. and Cartier, E., Phys. Rev. Lett. 72, 2745 (1994).Google Scholar
36.Griscom, D. L, J. Electron. Matter 21, 762 (1992); Y. Nissan-Cohen and T. Gorczyca, IEEE Electron. Dev. Lett. 9, 287 (1988).Google Scholar
37.Williams, R., J. Vac. Sci. Technol. 11, 1025 (1974).Google Scholar
38.Brower, K. L., Phys. Rev. B 38, 9657 (1988).Google Scholar
39.Stesmans, A., Appl. Phys. Lett. 68, 2723 (1996); 2076 (1996).Google Scholar
40.Uren, M. J., Brunson, K. M., Stathis, J. H., and Cartier, E., Microelec. Eng. 36, 219 (1997).Google Scholar
41.Vranch, R. L, Henderson, B., and Pepper, M., Appl. Phys. lett. 52, 1161 (1988); D. Vuillaume, D. Deresmes, and D. Stiévenard, Appl. Phys. Lett. 64, 1690 (1994).Google Scholar
42.Krick, J. T., Lenahan, P. M., and Dunn, G. J., Appl. Phys. Lett. 59, 3437 (1991).Google Scholar
43.Stathis, J. H. and DiMaria, D. J., Appl. Phys. Lett. 61, 2887 (1992).Google Scholar
44.Stathis, J. H., Cartier, E., Edwards, A. H., and Poindexter, E. H., in Silicon Nitride and Silicon Dioxide Thin Insulating Films, edited by Deen, M. J., Brown, W. D., Sundaram, K. B., and Raider, S. I. (Electrochemical Society, Pennington, NJ, 1997), p. 259.Google Scholar
45.Edwards, A. and Fowler, B., Microelectr. Reliab. 39, 3 (1999).Google Scholar
46.Tuttle, B. and Walle, C. G. Van de, Phys. Rev. 59, 12884 (1999).Google Scholar
47.Morton, J. R. and Preston, K. F., J. Magn. Res. 30, 577 (1978).Google Scholar