Hostname: page-component-54dcc4c588-9xpg2 Total loading time: 0 Render date: 2025-09-12T07:04:21.192Z Has data issue: false hasContentIssue false

Characterization on the Viscoelastic Property of PDMS in theFrequency Domain

Published online by Cambridge University Press:  28 January 2011

Ping Du
Affiliation:
Department of Mechanical Engineering, Boston University, Boston MA 02215, U.S.A.
I-Kuan Lin
Affiliation:
Department of Mechanical Engineering, Boston University, Boston MA 02215, U.S.A. Global Science & Technology, Greenbelt, MD 20770, U.S.A.
Hongbing Lu
Affiliation:
Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, U.S.A.
Xi lin
Affiliation:
Department of Mechanical Engineering, Boston University, Boston MA 02215, U.S.A.
Xin Zhang
Affiliation:
Department of Mechanical Engineering, Boston University, Boston MA 02215, U.S.A.
Get access

Abstract

A key issue in using Polydimethylsiloxane (PDMS) based micropillars ascellular force transducers is obtaining an accurate characterization ofmechanical properties. The Young’s modulus of PDMS has been extended from aconstant in the ideal elastic case to a time-dependent function in theviscoelastic case. However, the frequency domain information is of morepractical interest in interpreting the complex cell contraction behavior. Inthis paper, we reevaluated the Young’s relaxation modulus in the time domainby using more robust fitting algorithms than previous reports, andinvestigated the storage and loss moduli in the frequency domain using theFourier transform technique. With the use of the frequency domain modulusand the deflection of micropillars in the Fourier series, the forcecalculation can be much simplified by converting a convolution in the timedomain to a multiplication in the frequency domain.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K. and Chen, C. S., Proc. Natl. Acad. Sci. USA. 100, 14841489 (2003).Google Scholar
2. Zhao, Y. and Zhang, X., 18th IEEE MEMS, Miami Beach, FL, 398404 (2005).Google Scholar
3. Zheng, X. and Zhang, X., J. Micromech. Microeng. 18, 125006 (2008).Google Scholar
4. Xiang, Y. and LaVan, D. A., Appl. Phys. Lett. 90, 133901 (2007).Google Scholar
5. Lin, I. K., Ou, K. S., Liao, Y. M., Liu, Y., Chen, K. S. and Zhang, X., J. Microelectromech. Syst. 18, 10871099 (2009).Google Scholar
6. Lin, I. K., Liao, Y. M., Liu, Y., Ou, K. S., Chen, K. S. and Zhang, X., Appl. Phys. Lett. 93, 251907 (2008).Google Scholar
7. Du, P., Lin, I. K., Lu, H. and Zhang, X., J. Micromech. Microeng. 20, 095016 (2010).Google Scholar
8. Huang, G., Wang, B. and Lu, H., Mech. Time-Depend. Mater. 8, 345364 (2004).Google Scholar
9. White, C. C., Vanlandingham, M. R., Drzal, P. L., Chang, N. K. and Chang, S. H., J. Polym. Sci. Pt. B-Polym. Phys. 43, 18121824 (2005).Google Scholar
10. Herbert, E. G., Oliver, W. C. and Pharr, G. M., J. Phys. D Appl. Phys. 41, 074021 (2008).Google Scholar
11. Herbert, E. G., Oliver, W. C., Lumsdaine, A. and Pharr, G. M., J. Mater. Res. 24, 626637 (2009).Google Scholar
12. Le Rouzic, J., Delobelle, P., Vairac, P. and Cretin, B., Eur. Phys. J.-Appl. Phys. 48, 14 (2009).Google Scholar
13. Wu, C. L., Lin, H. C., Hsu, J. S., Yip, M. C. and Fang, W. L., Thin Solid Films 517, 48954901 (2009).Google Scholar
14. Brinson, H. F. and Brinson, L. C., Polymer Engineering Science and Viscoelasticity, An Introduction. (Springer, New York, 2008).Google Scholar