Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T11:43:18.548Z Has data issue: false hasContentIssue false

The Charge State of Iron Ions Implanted Into Sapphire

Published online by Cambridge University Press:  26 February 2011

C. J. Mchargue
Affiliation:
Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37831 USA
P. S. Sklad
Affiliation:
Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37831 USA
C. W. White
Affiliation:
Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, TN 37831 USA
G. C. Farlow
Affiliation:
Wright State University, Dayton, OH 45435 USA
A. Perez
Affiliation:
Universite Claude Bernard Lyon I, Villeurbanne Cedex, France
N. Kornilios
Affiliation:
Universite Claude Bernard Lyon I, Villeurbanne Cedex, France
G. Marest
Affiliation:
Universite Claude Bernard Lyon I, Villeurbanne Cedex, France
Get access

Abstract

Single crystals of α-Al2O3 were implanted with 57Fe+ at room temperature to fluences ranging from 1016 to 1017 ions/cm2. The damage in the implanted zone and the valence states and local environment of implanted ions were studied by transmission electron microscopy, Rutherford backscattering-channelling, and conversion electron Mössbauer spectroscopy. The implanted iron was distributed among the three charge states Fe2+, Fe3+, and Fe°(metallic clusters) with the relative amount of each varying with concentration of implanted iron.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McHargue, C. J., Nucl. Instrum. Methods Phys. Res. B19/20, 797 (1987).Google Scholar
2. Barnett, P. J. and Page, T. F., J. Mater. Sci. 19, 3524 (1984).CrossRefGoogle Scholar
3. Hioki, T., Itoh, A., Noda, S., Doi, H., Kawamoto, J., and Kamigaito, O., J. Mater. Sci. Lett. 3, 1099 (1984).Google Scholar
4. Perez, A., Marest, G., Sawicka, B. D., Sawicki, J. A., and Tyllszczak, T., Phys. Rev. B 28, 1227 (1983).Google Scholar
5. Kowalski, J., Marest, G., Perez, A., Sawicka, B. D., Stanek, J., and Tyliszczak, T., Nucl. Instrum. Methods 209/210, 1145 (1983).Google Scholar
6. Guermazi, M., Marest, G., Perez, A., Sawicka, B. D., Sawicki, J. A., Thevenard, P., and Tyliszczak, T., Mat. Res. Bull. 18, 529 (1983).Google Scholar
7. Sawicka, B. D. and Sawicki, J. A., Topics In Current Physics, Vol.25, ed. Gonser, U. (Springer, Berlin 1981) 139.Google Scholar
8. Greenwood, N. N. and Gibb, T. C., Mbssbauer Spectroscopy, (Chapmann and Hall Ltd., London, 1971) 249.Google Scholar
9. Rossiter, M. J., J. Phys. Chem. Solids 26, 775 (1965).Google Scholar
10. Janet, C. and Gilbert, H., Bull. Soc. Fr. Mineral. Cristallogr. 93, 213 (1970).Google Scholar
11. Van Diepen, A. M. and Popma, Th. J. A., Solid State Commun. 27, 121 (1978).Google Scholar
12. McHargue, C. J., Sklad, P. S., White, C. W., Farlow, G. C., Perez, A., Kornilos, N., and Marest, g., Materials Modification by High-Fluence Ion Beams, Kelly, R. and Silva, M. F. da, eds. (in press).Google Scholar
13. Catlow, C.R.A., James, R., Mackrodt, W. C., and Stewart, R. F., Phys. Rev. B 25, 1006 (1982).Google Scholar
14. Pells, G. P. and Stathopoulos, A. Y., Rad. Eff. 74, 181 (1983).Google Scholar
15. McLean, M. and Hondros, E. D., J. Mater. Scd. 6, 19 (1971).Google Scholar
16. Templier, C., Gaboriaud, R. J., and Garem, H., Mater. Sct. Eng. 69, 63 (1985).Google Scholar