Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-04T16:53:41.227Z Has data issue: false hasContentIssue false

Chemical Synthesis and Characterization of Nanostructured Titanium Aluminide

Published online by Cambridge University Press:  15 February 2011

S.T. Schwab
Affiliation:
Southwest Research Institute, Materials Engineering and Technology Division, 6220 Culebra Road, P. O. Drawer 28510, San Antonio, Texas 78228-0510
P.P. Paul
Affiliation:
Southwest Research Institute, Materials Engineering and Technology Division, 6220 Culebra Road, P. O. Drawer 28510, San Antonio, Texas 78228-0510
Y-M. Pan
Affiliation:
Southwest Research Institute, Materials Engineering and Technology Division, 6220 Culebra Road, P. O. Drawer 28510, San Antonio, Texas 78228-0510
Get access

Abstract

Although plagued by a lack of ductility, titanium aluminides are among the most promising intermetallics under development. Significant improvements in ductility may be obtained from nanostructured intermetallics. Nanosize particles of TiAl3 have been prepared by heat-treatment of chemically synthesized precursor (compound 1). Nanosized TiAl3 has been characterized by chemical analysis, XRD, EDS, NMR, and HREM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. a) Fleischer, R.L., J. Mat. Sci., 22, 2281 (1987); b) R.L. Fleischer, D.M. Dimiduk, and H.A. Lipsitt, Ann. Rev. Mater. Sci., 19, 231 (1989); c) S. Naka, M. Thomas, and T. Khan, Mater. Sci. Tech, 8, 291 (1992); d) D.M. Dimiduk, D.B. Miracle, and C.H. Ward, Mater. Sci. Tech, 8, 367 (1992); e) N.S. Stoloff, in High-Temperature Ordered Intermetallic Alloys edited by C.C. Kirch, C.T. Liu, and N.S. Stoloff, Mat. Res. Soc. Symp. Proc., 39, Pittsburgh, PA, pp. 3-30 (1985).Google Scholar
2. a) Froes, F.H., Suryanarayana, C., and Eliezer, D., J. Mat. Sci., 27, 5113 (1992); b) K.S. Kumar, in Structural Intermetallics, edited by R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, (The Minerals, Metals & Materials Society: Warrendale, PA, 1993) pp. 87-96; c) Z.L. Wu and D.P. Pope, in Structural Intermetallics (op. cit.), pp 107-116.Google Scholar
3. Umakoshi, Y., Yamaguchi, M., Sakagami, T., and Yamane, T., J. Mat. Sci., 24, 1599 (1989).Google Scholar
4. Aoki, K. and Izumi, O., J. Jpn. Inst. Met., 43, 358 (1979).Google Scholar
5. Liu, T. and Inouye, H., Metall. Trans. A., 10A, 1515 (1979).Google Scholar
6. Bohn, R., Haubold, T., Birringer, R., and Gleiter, H., Scripta Met. et Mat., 25, 811 (1991).Google Scholar
7. Brus, L.E. and Siegel, R.W., et al. , J. Mater. Res., 4, 704 (1989).Google Scholar
8. a) Whitesides, G.M., Mathias, J.P., and Seto, C.J., Science, 254, 1312 (1991); b) G.A. Ozin, Adv. Mater., 4, 612 (1992).Google Scholar
9. a) Chang, H., Höfler, H.J., Altstetter, C.J., and Averback, R.S., Scripta Met. et Mat., 25, 1161 (1991); b) H. Chang, C.J. Altstetter, and R.S. Averback, J. Mater. Res., 11, 2962 (1992).Google Scholar
10. Bonnemann, H., Brijoux, W., and Joussen, T., Angew. Chem. Int. Ed. Engi., 29, 273 (1990).Google Scholar
11. Zeng, D. and Hampden-Smith, M.J., Chem. Mater., 5, 681 (1993).Google Scholar
12. Jensen, J.A., Gozum, J.E., Pollina, D.M., and Girolami, G.S., J. Am. Chem. Soc., 110, 1643 (1988).Google Scholar
13. Bulychev, B.M., Tokareva, S.E., Soloveichick, G.L., and Evdokimova, E.V., J. Organomet. Chem., 179, 263 (1979).Google Scholar
14. Alyea, E.C., Bradley, D.C., and Copperwaite, R.G., J. Chem. Soc., Dalton Trans., 1580 (1972).Google Scholar
15. Finholt, A.E., Bond, A.C., and Schleisinger, H.I., J. Am. Chem. Soc., 69, 1199 (1947).Google Scholar
16. Maciel, G.E., Bronnimann, C.E., and Hawkins, B.L., in Advances in Magnetic Resonance edited by Warren, W.S. (Academic: New York, 1990, Vol. 14) pp 125150.Google Scholar
17. Akitt, J.W., in Progress in Nuclear Magnetic Resonance, edited by Emsley, J.W., Feeney, J., and Sutcliffe, L.H., (Pergamon: Oxford, U.K., 1989, Vol.21) pp 1149.Google Scholar
18. Jesson, J.P., in NMR of Paramagnetic Molecules: Principles and Applications, edited by Mar, G.N. La, Horrocks, W. DeW Jr., and Holm, R.H., (Academic: New York, 1973) pp. 152.Google Scholar