Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-06T12:21:08.635Z Has data issue: false hasContentIssue false

Classification and Characterization of the Shape Memory Binary Alloys

Published online by Cambridge University Press:  26 February 2011

Mitsuo Notomi
Affiliation:
notomim@isc.meiji.ac.jp, Meiji University, Mechanical Engineering, 1-1-1 Higashimita Tama-ku, Kawasaki, KANAGAWA, 214-8571, Japan
Krystyn J Van Vliet
Affiliation:
krystyn@MIT.EDU, Massachusetts Institute of Technology, Materials Science and Engineering, Cambridge, MA, 02139-4307, United States
Sidney Yip
Affiliation:
syip@mit.edu, Massachusetts Institute of Technology, Materials Science and Engineering, Cambridge, MA, 02139-4307, United States
Get access

Abstract

All shape memory binary alloys (SMBA) that exhibit not only perfect shape recovery but also partial shape recovery were reviewed and classified into three groups, B2, A2 and A1 type, according to the parent phases. There are the thirteen, six and eleven alloys belonging to B2, A2 and A1 type, respectively. In the group of B2 type SMBA the alloys are divided into two categories due to the combination of the elements. Over A1 and A2 type SMBA the atomic composition of one element is larger than the other so the larger one is called a major element. The major elements, Ti, U, Fe, and Cu, of A2 type SMBA do not belong to the group 5 and 6 in which the elements have a typical BCC (A2) crystal structure. In the A1 type SMBA there are four major elements, Mn, Fe, Co, and In and the SMBA except for In-based SMBA have ferromagnetic or antiferromagnetic natures. The shape memory effect (SME) for A1 (FCC) type SMBA might need the magnetic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chang, L.C., Read, T.A., Trans. AIME 189 (1951) 4752.Google Scholar
2 Buehler, W.J., Gilfrich, J.V., Wiley, R.C., J. Appl. Phys. 34 (1963) 14751477.Google Scholar
3 Otsuka, K., Ren, X., Prog. Mater. Sci. 50 (2005) 517678.Google Scholar
4 ibid. 3 p.593.Google Scholar
5 Otsuka, K., Wayman, C.M., Scr. Metall. 9 (1975) 10171022.Google Scholar
6 Zener, C. Phys. Rev. 11 12 (1947) 846851.Google Scholar
7 Saburi, T., in: Otsuka, K., Wayman, C.M. (Eds.), Shape Memory Materials, Cambridge University Press, 1998, pp. 4996.Google Scholar
8 Buehler, W.J., Gilfrich, J.V., Wiley, R.C., J. Appl. Phys. 34 (1963) 14751477.Google Scholar
9 Miyazaki, S., Otsuka, K., Suzuki, Y., Scr. Metall. 15 (1981) 287292.Google Scholar
10 Donkersloot, H.C., Vucht, J.H.N. Van, J. Less-Common Met. 20 (1970) 8391.Google Scholar
11 Nishida, M., Hara, T., Morizono, Y., Ikeya, A., Kijima, H., A. ChibaActa Mater. 45 11 (1997) 48474853.Google Scholar
12 Xu, Y., Otsuka, K., Furubayashi, E., Mitose, K., Mater. Letters 34 (1998) 1418.Google Scholar
13 Cai, W., Otsuka, K., Scripta Materialia 41 12 (1999) 13111317.Google Scholar
14 Solomon, V.C., Nishida, M., Mater. Trans. 43 5 (2002) 908915.Google Scholar
15 Otsuka, K., Oda, K., Ueno, Y., Piao, M., Ueki, T., Horikawa, H., Scr. Metall. Mater. 29 (1993) 13551358.Google Scholar
16 Semenova, E.L., Kudryavtsev, Y.V., J. Alloys Compd. 203 (1994) 165168.Google Scholar
17 Das, B.K., Schmerling, M.A., Lieberman, D.S., Mater. Sci.Eng. 6 (1970) 248254.Google Scholar
18 Das, B.K., Lieberman, D.S., Acta Metall. 23 (1975) 579585.Google Scholar
19 Fonda, R.W., Jones, H.N., Vandermeer, R.A., Scr. Mater. 39 8 (1998) 10311037.Google Scholar
20 Chen, B.H., Franzen, H.F., J Less-Common Met. 157 (1990) 3745.Google Scholar
21 Krasevec, V., Phys. Stat. Sol. (a) 30 (1975) 241250.Google Scholar
22 Adachi, K., Wayman, C.M., Metallurgical Transactions, 16A(1985) 15671579.Google Scholar
23 Yang, W.S., Mikkola, D.E., Mat. Res. Soc. Symp. Proc. 246 (1992) 135140.Google Scholar
24 Greninger, A.B., Mooradian, V.G., Trans. AIME 128 (1938) 337355.Google Scholar
25 Cornelis, I., Wayman, C.M., Acta Metall. 22 (1974) 291300.Google Scholar
26 Tadaki, T., Tokoro, M., Shimizu, K., Trans. JIM 16 (1975) 285296.Google Scholar
27 Oshima, R., Adachi, K., Jpn. J. Appl. Phys. 144 (1975) 563564.Google Scholar
28 Schroeder, T.A., Cornelis, I., Wayman, C.M., Metall. Trans. 7A (1976) 535553.Google Scholar
29 Masson, D.B., Barret, C.S., Trans. AIME (1958) 260265.Google Scholar
30 Nagasawa, A., J. Phys. Soc. Japan 32 (1972) 864.Google Scholar
31 Miura, S., Mori, T., N, Nakanishi, Scr. Metall. 7 (1973) 697700.Google Scholar
32 Krishnan, R.V., Brown, L.C., Metall. Trans. 4 (1973) 423429.Google Scholar
33 Saburi, T., Wayman, C.M., Acta Metall. 28 (1980) 114.Google Scholar
34 Cornelis, I., Wayman, C.M., Scr. Metall. 8 (1974) 13211326.Google Scholar
35 Kubo, H., Shimizu, K., Wayman, C.M., Metall. Trans. 8A (1977) 493502.Google Scholar
36 Takezawa, K., Sato, S., Minato, K., Maruyama, S., Marukawa, K., Mater. Trans. JIM 33 3(1992) 294301.Google Scholar
37 Nakanishi, N., Mori, T., Miura, S., Murakami, Y., Kachi, S., Philos. Mag. 28 (1973) 277292.Google Scholar
38 Miura, S., Mori, T., Nakanishi, N., Murakami, Y., Kachi, S., Philos. Mag. 34 3 (1976) 337349.Google Scholar
39 Chang, L.C., Read, T.A., Trans. AIME 189 (1951) 4752.Google Scholar
40 Ren, X., Otsuka, K., Nature 389 (1997) 579582.Google Scholar
41 Krompholz, K., Weiss, A., Ber.Bunsenges. Phys. Chem. 82 (1978) 334341.Google Scholar
42 Makita, T., Nagasawa, A., Morii, Y., Minakawa, N., Ohno, H., Physics B 430 (1995) 213214.Google Scholar
43 Darling, T.W., Chu, F., Migliori, A., Thoma, D.J., Lopez, M., Lashley, J.C., Lang, B.E., Boerio-Goates, J., Woodfield, B.F., Philos. Mag. 82 7(2002) 825837.Google Scholar
44 Enami, K., Nenno, S., Metall. Trans. 2 (1971) 14871491.Google Scholar
45 Chakravorty, S., Wayman, C.M., Metall. Trans. 7A (1976) 555568.Google Scholar
46 Chakravorty, S., Wayman, C.M., Metall. Trans. 7A (1976) 569582.Google Scholar
47 Firstov, G.S., Koval, Y.N., Humbeeck, J.V., J. Phys. IV Pr8 (2001) 481486.Google Scholar
48 Koval, Y.N., Firstov, G.S., Kotko, A.V., Scr. Metall. Mater. 27 (1992) 16111616.Google Scholar
49 Ahmed, T., Rack, H.J., J. Mater. Sci. 31 (1996) 42674276.Google Scholar
50 Baker, C., Metal Science Journal 5 (1971) 92100.Google Scholar
51 Kim, H.Y., Satoru, H., Kim, J.I., Hosoda, H., Miyazaki, S., Mater. Trans. 45 7 (2004) 24432448.Google Scholar
52 Ikeda, M., Komatsu, S., Nakamura, Y., Mater. Trans. 45 4 (2004) 11061112.Google Scholar
53 Vandermeer, R.A., Acta. Metall. 28 (1980)383393.Google Scholar
54 DW, Brown, et al.Metallurgical and Materials Transactions, 32A(2001) 2219–228.Google Scholar
55 Vandermeer, R.A., Ogle, J.C., Snyder, W.B., Scr. Metall. 12 (1978) 243248.Google Scholar
56 Vandermeer, R.A., Ogle, J.C., Northcutt, W.G., Metall. Trans. 12A (1981) 733741.Google Scholar
57 Guedou, J.Y., Paliard, M., Rieu, J., Scr. Metall. 10 (1976)631634.Google Scholar
58 Guedou, J.Y., Rieu, J., Proc. Int. Conf. Martensitic Transformation, (1979) 667672.Google Scholar
59 Swann, P.R., Warlimont, H., Acta Metall. 11 (1963) 511527.Google Scholar
60 Liu, X.J., Ohnuma, I., Kainuma, R., Ishida, K., J. alloys compd. 264 (1998) 201208.Google Scholar
61 Nagasawa, A., Phys. Stat. Sol. A 8 (1971) 531538.Google Scholar
62 Bojarski, Z., Morawiec, H., Matyja, P., Cryst. res. technol. 18 7 (1983) K86–K89.Google Scholar
63 Shimizu, K., Sakamoto, H., Otsuka, K., Trans. JIM 16 (1975) 581590.Google Scholar
64 Kuwano, N., Wayman, C.M., Trans. JIM 24 7 (1983) 499503.Google Scholar
65 Miura, S., Morita, Y., Nakanishi, N., Shape Memory Effects in Alloys, Perkins, J., ed. Plenum Press, NY (1975) 389405.Google Scholar
66 Shimizu, K., Okumura, Y., Kubo, H., Trans. JIM 23 2 (1982) 5359.Google Scholar
67 Savitskii, E.M., Burkhanov, G.S., Zalivin, I.M., Sov. phys. dokl. 17 5 (1972) 492494.Google Scholar
68 Nittono, O., Satoh, T., Koyama, Y., Trans. JIM 22 4 (1981) 225236.Google Scholar
69 Schneider, T., Acet, M., Rellinghaus, B., Wassermann, E.F., Pepperhoff, W., Phys. Rev. B 51 14(1995) 89178921.Google Scholar
70 Enami, K., Nagasawa, A., Nenno, S., Scr. Metall. 9 (1975) 941948.Google Scholar
71 Tomota, Y., Piao, M., Hasunuma, T., Kimura, Y., Nippon Kinzoku Gakkaishi 54 6 (1990) 628634.Google Scholar
72 Guimaraes, J.R.C., Danon, J., Scorzelli, R.B., Azevedo, I.S., J. Phys. F: Metal Phys., 10 (1980) L197202.Google Scholar
73 Ruban, A. V., Katsnelson, M. I., Olovsson, W., Simak, S. I., Abrikosov, I. A., Phys. Rev. B 71 (2005) 054402.Google Scholar
74 Kajiwara, S., Philos. Mag. A 41 3 (1980) 403415.Google Scholar
75 Swartzendruber, L.J., Sundman, B., Bull. alloy phase diagr. 4 2 (1983) 155160.Google Scholar
76 Jun, J.H., Shin, H.C., Choi, C.S., Mater. Sci. Tech. 15 (1999) 379381.Google Scholar
77 Klimars, S., Hesse, J., Huck, B., J. Magn. Magn. Mater. 51 (1985) 183189.Google Scholar
78 Wayman, C.M., Scr. Metall. 5 (1971)489490.Google Scholar
79 Sohmura, T., Oshima, R., Fujita, E., Scr. Metall. 14 (1980) 855856.Google Scholar
80 Furuya, Y., Hagood, N.W., Kimura, H., Watanabe, T., Mater. Trans. JIM 39 12 (1998) 12481254.Google Scholar
81 Oshima, R., Sugimoto, S., Sugiyama, M, Fujita, F.E., Trans. JIM 26 7 (1985) 523524.Google Scholar
82 Nakamura, Y., Sumiyama, K., M Shiga, J. Magn. Magn. Mater. 12 (1979) 127134.Google Scholar
83 Koval, Y.N., Mater. Sci. Forum 327–328 (2000) 271278.Google Scholar
84 Omori, T., Sutou, Y., Oikawa, K., Kainuma, R., Ishida, K., Mater. Trans. JIM 44, 12 (2003) 27322735.Google Scholar
85 Shin, H.C., Lee, S.H., Jun, J.H., Choi, C.S., Mater. Sci. Technol. 18 (2002) 429432.Google Scholar
86 Nittono, O., Koyama, Y., Trans. JIM 23 6 (1982) 285295.Google Scholar
87 Koyama, Y., Nittono, O., Scr. Metall. 18 (1984) 10751077.Google Scholar
88 Brukart, M.W., Read, T.A., J. Metals (1953) 15161524.Google Scholar
89 Basinski, Z.S., Christian, J.W., Acta Metall. 2 (1954) 101115.Google Scholar
90 Miura, S., Ito, M., Endo, K., Mem. Fac. Eng., Kyoto Univ. 43 (1981) 287303.Google Scholar