Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T02:45:03.582Z Has data issue: false hasContentIssue false

Comparison between SiO2 Films and Nitridated Oxides in N2O Ambient in Terms of Bulk/Interface Trapping Properties

Published online by Cambridge University Press:  22 February 2011

Constantin Papadas
Affiliation:
SGS—Thomson Microelectronics, Central R&D Labs, B.P. 16, 38921 Crolles, France
Patrick Mortini
Affiliation:
SGS—Thomson Microelectronics, Central R&D Labs, B.P. 16, 38921 Crolles, France
Get access

Abstract

The necessity of employing nitridation process in advanced technologies will be underlined. The different technological alternatives for preparing oxinitride layers will be traced back, followed by a review of the methods currently available for assessing the degradation features of the Si/SiO2 system. Furthermore, comparison between pure SiO2 layers and nitridated films in N2O ambient will be conducted in terms of bulk/interface trapping properties and the obtained physical degradation data will be correlated with classical reliability results. Large emphasis will be given on the trapping properties of tunnel oxides used in non—volatile memory arrays and different technological alternatives will be exploited (i.e. Rapid Thermal Nitridation, Furnace Nitridation). In addition, a similar analysis will be carried out for gate oxides. Finally, some guidelines concerning the optimum selection of the furnace nitridation conditions will be given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ito, T., Nakamura, T., Hishikawa, H., IEEE Trans. on Electron Devices, 29, 498 (1982)Google Scholar
2. Moslehi, M. and Saraswat, K., IEEE Trans. on Electron Devices, 32, 106 (1985)Google Scholar
3. Sun, C., Wong, C., Taur, Y. and Hsu, C., Symp. VSLI Tech. Dig., 17 (1989)Google Scholar
4. Habraken, F., Kuiper, A., Tamminga, Y. and Theeten, J., Journal of Applied Physics, 53, 6996 (1982)Google Scholar
5. Hori, T., Iwasaki, H. and Tsuji, K., IEEE Trans. on Electron Devices, 36, 340 (1989)Google Scholar
6. Fukuda, H., Arakawa, T. and Ohno, S., J. Journal of Applied Physics, 29, L2333 (1990)Google Scholar
7. Hwang, H., Ting, W., Kwong, D. and Lee, J., IEDM Tech. Dig., 421 (1990)Google Scholar
8. Vasquez, R. and Madhukar, A., Applied Physics Letters, 47, 998 (1985)Google Scholar
9. Momose, H., Morimoto, T., Yamabe, K. and Iwai, H., IEDM Tech. Dig., 65 (1990)Google Scholar
10. Ting, W., Lo, G., Ahn, J., Chu, T. and Kwong, D., IEEE Electron Device Letters, 12, 416 (1991)Google Scholar
11. Hwang, H., Ting, W., Maiti, B., Kwong, D. and Lee, J., Applied Physics Letters, 57, 1010 (1990)Google Scholar
12. Fukuda, H., Yasuda, M., Iwavushi, T. and Ohno, S., IEEE Electron Device Letters, 12, 587 (1991)Google Scholar
13. Liu, Z., Wann, H., Ko, P., Hu, C., Cheng, Y., IEEE Electron Device Letters, 13, 402 (1992)Google Scholar
14. Lo, G. and Kwong, D., IEEE Electron Device Letters, 13, 457 (1992)Google Scholar
15. Liu, Z., Wann, H., Ko, P., Hu, C., Cheng, Y., IEEE Electron Device Letters, 13, 51923 (1992)Google Scholar
16. Bouvet, D., Novkovski, N., Mi, J., Letourneau, P., Dutoit, M., Pio, F., Riva, C. and Bellafiore, N., Proc. of ESSDERC'93, 407 (1993)Google Scholar
17. Balk, P., Ed., ‘The Si-SiO2 System’, Materials Science Monographs, Elsevier (1988)Google Scholar
18. DiMaria, D, Journal of Applied Physics, 47, 4073 (1976)Google Scholar
19. Groeseneken, G., Maes, H., Beltran, N. and Kersmaecker, R. De, IEEE Trans. on Electron Devices, 31, 42 (1984)Google Scholar
20. Papadas, C., Ghibaudo, G., Pio, F., Monserie, C., Mortini, P., Pananakakis, G. and Riva, C., Solid State Electronics, 37, 495 (1994)Google Scholar
21. Papadas, C., Ghibaudo, G., Pananakakis, G., Riva, C. and Mortini, P., Journal of Applied Physics, 71, 4589 (199e Letters, 13, 89 (1992)Google Scholar
23. Papadas, C., Ghibaudo, G., Pio, F., Riva, C., Mortini, P. and Pananakakis, G., Electronic Letters, 29, 242 (1993)Google Scholar
24. Fukuda, H., Hayashi, T., Uchiyama, A. and Iwabuchi, T., Electronic Letters, 29, 947 (1993)Google Scholar
25. Bihan, R. Le, André-Benoit, E., Papadas, C., Pio, F. and Riva, C., Microelectronics Journal (Elsevier Advanced Technology), in press 1994 Google Scholar
26. Monserie, C., Papadas, C., Ghibaudo, G., Gounelle, C., Mortini, P. and Pananakakis, G., Proc. of IEEE/Int. Reliability Physics Symposium 1993, 280 (1993)Google Scholar
27. Pomp, H., Lifka, H., Paulzen, G., Montree, A., Woerlee, P. and Woltjier, R., Proc. of ESSDERC'93, 399 (1993)Google Scholar
28. Wu, A., Murali, V., Cox, N., Frost, M., Triplett, B. and Chan, T., Applied Physics Letters, 55, 1665 (1989)Google Scholar
29. Vincent, E., Papadas, C., Pio, F., Ghibaudo, G. and Riva, C., to be presented to ESSDERC'94, 1994 Google Scholar
30. Papadas, C., Ghibaudo, G., Pananakakis, G., Mortini, P., Riva, C. and Pio, F., Proc. of ESSDERC'92, 269 (1992)Google Scholar
31. Uchiyama, A., Fukuda, H., Hayabashi, T., Iwabuchi, T. and Ohno, S., IEDM Tech. Dig., 425 (1990)Google Scholar
32. Liang, M., Chang, C., Yrow, Y. T. and Bordersen, R., IEEE Trans. on Electron Devices, 31, 1238 (1984)Google Scholar