Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T01:33:47.796Z Has data issue: false hasContentIssue false

Comparison of Electron and Hole Initiated Impact Ionization in Zincblende and Wurtzite Phase Gallium Nitride

Published online by Cambridge University Press:  10 February 2011

E. Bellotti
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA, 30332, bellotti@groucho.mirc.gatech.edu
I. H. Oguzman
Affiliation:
National Semiconductor, Arlington, TX 76017
J. Kölnik
Affiliation:
Symbios Logic Corp., Colorado Springs, CO 80916
K. F. Brennan
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA, 30332, bellotti@groucho.mirc.gatech.edu
R. Wang
Affiliation:
Dept. of Electrical Engineering, University of Minnesota, MN 55455
P. P. Ruderi
Affiliation:
Dept. of Electrical Engineering, University of Minnesota, MN 55455
Get access

Abstract

In this paper, we present the first calculations of the electron and hole impact ionizatioi coefficients for both wurtzite and zincblende phase GaN as a function of the applied electrii field. The calculations are made using an ensemble Monte Carlo simulator including the ful details of the conduction and valence bands derived from an empirical pseudopotentia calculation. The interband impact ionization transition rates for both carrier species an determined by direct numerical integration including a wavevector dependent dielectric function It is found that the electron and hole ionization coefficients are comparable in zincblende Ga> at an applied field of ∼ 3 MV/cm, yet vary to a slight degree at both higher and lower applied field strengths. In the wurtzite phase, the electron and hole coefficients are comparable at hig] fields but diverge at lower applied fields. The most striking result is that the ionization rates an predicted to be substantially different for both carrier species between the two phases. It i predicted that the ionization rates for both carrier species in the zincblende phase are significanti; higher than in the wurtzite phase over the full range of applied fields examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Casady, J. B. and Johnson, R. W., Solid-State Electron., 39, 1409 (1996).Google Scholar
2. Pensi, G. and Troffer, Th., Solid State Phenomena, 47–48, 115 (1996).Google Scholar
3. Chow, T. P. and Tyagi, R., 5th Intl. Symp. on Power Semiconductor Devices and ICs, 84 (1993).Google Scholar
4. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B, 10, 1237 (1992).Google Scholar
5. Mohammad, S. N., Salvador, A. A., and Morkoc, H., Proceedings of the IEEE, 83, 1306 (1995).Google Scholar
6. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. phys. Lett., 70, 868 (1997).Google Scholar
7. Khan, M. A., Kuznia, J. N., Olson, D. T., Schaff, W. J., Burm, J. W., and Shur, M. S., Appl. phys. Lett., 65, 1121 (1994).Google Scholar
8. Nakamura, S., Mukai, T., and Senoh, M., Appl. phys. Lett., 64, 1687 (1994).Google Scholar
9. Khan, M. A., Kuznia, J. N., Olson, D. T., Van Hove, J. M., Blasingame, M., and Reitz, L. F., Appl. phys. Lett., 60, 2917 (1992).Google Scholar
10. Dmitriev, V. A., Kuznetsov, N. I., Irvine, K. G., and Carter, C. H. Jr, Mat. Res. Soc. Symp. Proc, 395, 909 (1996).Google Scholar
11. Shichijo, H. and Hess, K., Phys. Rev. B, 23, 4197 (1981).Google Scholar
12. Brennan, K. and Hess, K., Phys. Rev. B, 29, 5581 (1984).Google Scholar
13. Fischetti, M. V. and Laux, S. E., Phys. Rev. B, 38, 9721, (1988).Google Scholar
14. Chang, Y. C., Ting, D. Z.-Y., Tang, J. Y., and Hess, K., Appl. phys. Lett., 42, 26 (1983).Google Scholar
15. Kölnik, J., Oguzman, I. H., Brennan, K. F., Wang, R., Rüden, P. P., and Wang, Y., J. Appl. Phys., 78, 1033 (1995).Google Scholar
16. Oguzman, I. H., Kölnik, J., Brennan, K. F., Wang, R., Fang, T-N., and Rüden, P. P., J. Appl. Phys., 80, 4429 (1996).Google Scholar
17. Wang, R., Rüden, P. P., Kölnik, J., Oguzman, I. H., and Brennan, K. F., Mat. Res. Soc. Symp. Proc, 395, 601 (1995).Google Scholar
18. Kölnik, J., Oguzman, I. H., Brennan, K. F., Wang, R. and Ruden, P. P., J. Appl. Phys., 79, 8838 (1996).Google Scholar