Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T11:15:35.063Z Has data issue: false hasContentIssue false

Comparison of the Electromigration Behavior of Al(MgCu) with Al(Cu) and Al(SiCu)

Published online by Cambridge University Press:  10 February 2011

Hua Li
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Ann Witvrouw
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Sing Jin
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Hugo Bender
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Karen Maex
Affiliation:
IMEC, Kapeldreef 75, 3001 Leuven, Belgium
Ludo Froyen
Affiliation:
Dept.of Metallurgy and Materials Engineering, K.U. Leuven, de Croylaan 2, 3001 Leuven, Belgium
Get access

Abstract

Mg is one of the elements that are regarded as having a beneficial effect on the Al electromigration (EM) lifetime. In this paper, we compare the EM behavior of 0.4 μm wide passivated Al-1%Mg-0.5%Cu, Al-0.5%Cu and Al-l%Si-0.5%Cu lines. Plan-view transmission electron microscopy and focused ion beam imaging reveal that Al(MgCu) film undergoes bimodal grain growth. Auger electron spectroscopy and secondary ion mass spectrometry show a strong surface segregation and a severe bulk depletion of Mg. Additionally the line-width dependence of the rate of the resistivity decay during aging shows also a different behavior for Al(MgCu) compared to Al(Cu) and Al(SiCu). All these findings are consistent with the EM results that Al(MgCu), processed with our experimental conditions, has both the lowest median time to failure and deviation in time to failure. The results are discussed in the light of the effect of Mg addition on the microstructure and of the great surface activity of Mg.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ames, I., d'Heurle, F.M., and Horstmann, R.E., IBM J. Res. Develop. 14, 461 (1970).Google Scholar
2. d'Heurle, F.M. and Ho, P.S., in Thin Films: Interdiffusion and Reactions, edited by Poare, J.M., (Wiley-Interscience, New York, 1978) p. 243.Google Scholar
3. Gangulee, A. and d'Heurle, F.M., Appl. Phys. Lett. 19, 76 (1971).Google Scholar
4. d'Heurle, F.M. and Gangulee, A., Proc. 10th Annu. Reliability Phys. Symp., IEEE, NY, 1972, p. 165.10.1109/IRPS.1972.362546Google Scholar
5. d'Heurle, F.M., Gangulee, A., Aliotta, C.F., and Ranieri, V.A., J. Elec. Mater. 4, 497 (1975).Google Scholar
6. Gangulee, A. and d'Heurle, F.M., Thin Solid Films, 25, 317 (1975).Google Scholar
7. Licata, T.J., Sullivan, T.D., Bass, R.S., Ryan, J.G., and Knorr, D.B., in Materials Reliability Issues in Microelectronics 111, edited by Rodbell, K.P., Filter, W.F., Frost, H. and Ho, P.S. (Mater. Res. Soc. Proc. 309, Pittsburgh, PA, 1993), p. 97.Google Scholar
8. Theiss, S.K., Prybyla, J.A., and Marcus, M.A., in Materials Reliability in Microelectronics VII, edited by Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.E. Jr., and Suo, Z. (Mater. Res. Soc. Proc. 473, Pittsburgh, PA, 1997), p. 387.Google Scholar
9. Pai, B.C., Ramani, G., Pillai, R.M., and Satyanarayana, K.G., J. Mater. Sci. 30, 1903 (1995).Google Scholar
10. Kim, C., Selitser, S.I., and Morris, J.W., Jr., J. Appl. Phys, 75, 879 (994).10.1063/1.356442Google Scholar
11. Kalkman, A.J., Verbruggen, A.H., Janssen, G.C.A.M., and Radelaar, S., in Materials Reliability in Microelectronics VII, edited by Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.E. Jr., and Suo, Z. (Mater. Res. Soc. Proc. 473, Pittsburgh, PA, 1997), p.267.Google Scholar
12. Longworth, H.P. and Thompson, C.V., J. Appl. Phys. 69, 3929 (1991).Google Scholar
13. Colgan, E.G. and Rodbell, K.P., J. Appl. Phys. 75, 3423 (1994).Google Scholar
14. Dirks, A.G., in Materials Reliability in Microelectronics VI, edited by Filter, W.F., Clement, J.J., Oates, A.S., Rosenberg, R., and Lenahan, P.M., (Mater. Res. Soc. Proc. 428, Pittsburgh, PA, 1996), pp.201.Google Scholar
15. Prince, A. and Effenberg, G., in Ternary Alloys, Vol.4, edited by Petzow, G. and Effenberg, G. (VCH, Weinheim, Germany, 1990), p.547.Google Scholar
16. Cho, J. and Thompson, C.V., J. Electron Mater. 19, 1207 (1990).Google Scholar
17. Kordic, S., Auger, R.A., Dirks, A.G., and Wolters, R.A.M., Appl. Surface Sci., 91, 197 (1995).Google Scholar
18. Copel, M., Rodbell, K.P., and Tromo, R.M., Appl. Phys. Lett., 68, 1625 (1996).Google Scholar
19. Li, H., Maex, K., Brijs, B., Conard, T., Baklanov, M., Boullart, W., and Froyen, L., MRS Spring meeting, Symposium K, 1998.Google Scholar
20. Leighly, H.P. Jr and Alam, A., J. Phys. F: Met. Phys., 14, 1573 (1984).Google Scholar