Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-17T11:23:58.315Z Has data issue: false hasContentIssue false

Compliant Substrate Processes

Published online by Cambridge University Press:  10 February 2011

W. A. Doolittle
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Eng., Atlanta, GA 30332-0250, Email: alan.doolittle@ece.gatech.edu
A. S. Brown
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Eng., Atlanta, GA 30332-0250
Get access

Abstract

Recent results indicate that compliant substrates offer significant promise as a new approach for strain management in semiconductors. The potential applications include 1) the growth of device-quality highly mismatched materials on dissimilar substrates, and 2) the lateral control of material properties resulting from the effects of strain on bandstructure and/or growth dynamics. A significant amount of research in this area is dedicated to the reduction of extrinsic processing effects resulting from compliant substrate fabrication, and the development of simple models for understanding the observed reduction in defect density and/or strain in the epitaxial films grown on compliant substrates. A recent focus in our work has been on the growth of GaN on a novel and easily removable substrate -lithium gallate- for the regrowth on a bonded GaN template. The first step in this approach is the optimization of the growth of GaN on lithium gallate. In addition, this approach requires the use of an appropriate bonding layer to reduce the strain or defect production during growth due to coefficient of thermal expansion mismatches between the GaN sample and the handle wafer. Our work in this area will be highlighted in the context of an overview of various compliant substrate approaches and current results that indicate their efficacy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ejeckham, F. E., Seaford, M. L., Lo, Y. H., H. Hou, Q. and Hammons, B. E., Appl. Phys. Lett. 71, 776 (1997).Google Scholar
[2] Lo, Y. H., Appl. Phys. Lett., 59, 2311 (1991).Google Scholar
[3] Wang, W. I., Proceedings of the 16th North American MBE Conference (to be published).Google Scholar
[4] Yang, Z., Guarin, F., Tao, I. W., Wang, W. I. and Iyer, S. S., J. Vac. Sci. Technol., B 13, 789 (1995).Google Scholar
[5] Carter-Coman, C., Brown, A. S., Jokerst, N. M., Dawson, D. E., Bicknell-Tassius, R., Feng, Z. C., Rajkumar, K. C. and Dagnall, G., J. Electr. Mater., 25, 1044 (1996).Google Scholar
[6] Carter-Coman, C., Bicknell-Tassius, R., Brown, A. S., and Jokerst, N. M., Appl. Phys. Lett., 70, 1754, 1997.Google Scholar
[7] Brown, A. S., J. Vac. Sci. Technol. B 16(4), 2308, Jul/Aug 1998.Google Scholar
[8] Kopperschmidt, P., Senz, St., Scholz, R. and Gosele, U., Appl. Phys. Lett., 74(3), 374, (1999).Google Scholar
[9] Zhu, Z. H., Ejeckham, F. E., Zhang, Z., Zhang, J., Lo, Y. H., Hou, H. Q., Hammons, Conference proceedings of LEOS 97, 10't annual meeting, San Francisco CA, Nov 10–13 1997.Google Scholar
[10] Seaford, M. L., Tomich, D. H., Eyink, K. G., Lampert, W. V., and Ejeckham, F. E., In the 1997 International Symposium on Compound Semiconductors.Google Scholar
[11] Freund, L. B., and Nix, W. D, Appl. Phys. Lett., 69(2), 173 Google Scholar
[12] Kuech, T., Private communicationGoogle Scholar
[13] Shen, J. J. and Brown, A. S., unpublished data.Google Scholar
[14] See discussion of Mechanisms summarized in reference 7.Google Scholar
[15] Wonga, W. S., Sands, T., Cheung, N. W., Appl. Phys. Lett., 72 (5), 599, 1998 Google Scholar
[16] Hansen, D. M., Moran, P. D., Dunn, K. A., Babcock, S. E., Matyi, R. J., and Kuech, T. F., J. Cryst. Growth, 195(1–4), 144, 1998 Google Scholar
[17] Doolittle, W. A., Kang, S., Kropewnicki, T. J., Stock, S., Kohl, P. A., and Brown, A. S., J. Electron. Mat., Vol 27, No 8, 1998 Google Scholar
[18] Doolittle, W. A., Kropenwicki, Tom, Carter-Coman, C., Stock, S., Kohl, Paul, Jokerst, Nan Marie, Metzger, Robert A., Kang, Sangbeom, Lee, Kyeong, May, Gary, and Brown, April S., J. Vac. Sci. & Tech. B, May/Jun, 1998.Google Scholar
[19] Kropewnicki, Thomas J., Doolittle, W. Alan, Carter-Coman, Carrie, Kang, Sangboem, Kohl, Paul A., Jokerst, Nan Marie, and Brown, April S., J. Electrochem. Soc. Lett., May 1998 Google Scholar
[20] Doolittle, W. A., Kropewnicki, T., Carter-Coman, C., Stock, S., Kohl, P., Jokerst, N. M., Metzger, R. A., Kang, S., Lee, K., May, G., and Brown, A. S., Proceedings of the Materials Research Society, Fall 1997, Boston, MA Google Scholar
[21] Matyi, R. J., Doolittle, W. A., Brown, A. S., to be published in Physics Review: D.Google Scholar
[22] Kang, S., Doolittle, W. A., Brown, A. S., submitted to Applied Physics LettersGoogle Scholar
[23] Kuan, T. S., Private CommunicationGoogle Scholar
[24] Neumann, H., Pirl, E., Kuhn, G., J. Mater. Sci. Lett. (GB), Vol. 6, No. 4, 1987, p. 495.Google Scholar
[25] Properties of group III nitrides, ed. by Edgar, J. H., INSPEC, London, 1994 Google Scholar
[26] Nanamatsu, S., Doi, K., Takahashi, M., Jpn. J. Appl. Phys., Vol. 11, 1972, p. 816.Google Scholar
[27] Ishii, T., Tazoh, Y., Miyazawa, S., J. Cryst. Growth, 189–190, p. 208, 1998.Google Scholar
[28] Kryliouk, O. M., Reed, M., Mastro, M., Dann, T., Anderson, T. J., and Chai, B., Abstract 364, Meeting of Elect. Chem. Soc., Boston, Nov. 1–6, 1998.Google Scholar
[29] Handbook of Chemistry and Physics, Lide, D. R., 78th Ed., CRC Press, New York.Google Scholar
[30] Kryliouk, O. M., Dann, T. W., Anderson, T. J., Maruska, H. P., Zhu, L. D., Daly, J. T., Lin, M., Norris, P., Chai, H. T., Kisker, D. W., Li, J. H., Jones, K. S., Mat. Res. Symp. Proc. Vol. 449, 1997, p. 123.Google Scholar
[31] Cheng, T. S., Foxon, C. T., and Novikov, S. V., Semiconductors 30 (6), 603, 1996.Google Scholar