Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T04:25:50.107Z Has data issue: false hasContentIssue false

Comprehensive Reactor-Scale Modeling of III-V Ternary Compound Growth by Movpe

Published online by Cambridge University Press:  10 February 2011

E.V. Yakovlev
Affiliation:
Soft-Impact Ltd, St.Petersburg, Russia, yakovlev@softimpact.fi.ru
R.A. Talalaev
Affiliation:
Soft-Impact Ltd, St.Petersburg, Russia, yakovlev@softimpact.fi.ru
S. Yu. Karpov
Affiliation:
Soft-Impact Ltd, St.Petersburg, Russia, yakovlev@softimpact.fi.ru
Yu.A. Shpolyanskiy
Affiliation:
Inst. for Fine Mechanics and Optics, Computer Technology Dept, St.Petersburg, Russia
Yu.N. Makarov
Affiliation:
Univ. Erlangen-Nürnberg, Fluid Mechanics Dept, Erlangen, Germany
S.A. Lowry
Affiliation:
CFD Research Corporation, Huntsville, AL
Get access

Abstract

A novel quasi-thermodynamic approach is suggested to simulate surface chemistry in III-V compound MOVPE. Blocking of free adsorption sites by methyl radicals is considered as the mechanism limiting the growth rate at low temperatures. This assumption has provided a good reproduction of experimental data on GaAs MOVPE in various types of reactor. The commercial computational fluid dynamics software CFD-ACE™ has been used to perform a detailed threedimensional modeling of AlGaAs and InGaP deposition in an AIX-200 horizontal reactor. The surface model has been incorporated into the code to obtain the growth rate and layer composition distributions over the substrate. Modeling results demonstrate a reasonable agreement with experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mountziaris, T.J. and Jensen, K.F., J. Electrochem. Soc. 136, 2426 (1991).10.1149/1.2085990Google Scholar
2 Mountziaris, T.J., Ingle, N.K., and Kalyanasundaram, S., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L.V., Jensen, K.F., Dubois, L.H., Gross, M.E. (Mater. Res. Soc. Proc. 204, Pittsburgh, PA, 1991) pp. 219224.Google Scholar
3 Karpov, S.Yu., Prokofyev, V.G., Yakovlev, E.V., Talalaev, R.A., Makarov, Yu.N., MRS Internet J. Nitride Semicond. Res. 4, 4 (1999).10.1557/S1092578300000600Google Scholar
4 Gurvich, L.V., Veyts, I.V., Alcock, Ch.B. (Eds.), Thermodynamic Properties of Individual Substances, 4th ed., (Hemisphere, New York, 1991).Google Scholar
5 Fujii, K, Suemune, I., Koui, T., Yamanishi, M., Appl. Phys. Lett. 60, 1498 (1992).10.1063/1.107283Google Scholar
6 McCaulley, J.A., Shuhl, R.J., Donnely, V.M., J.Vac.Sci.Technol. A 9, 2872 (1996).10.1116/1.577146Google Scholar
7 Stringfellow, G.B., Organometallic Vapor Phase Epitaxy. Theory and Practice, 1st ed. (Academic Press, London, 1989), p. 186.Google Scholar
8 Stringfellow, G.B., Organometallic Vapor Phase Epitaxy. Theory and Practice, 1st ed. (Academic Press, London, 1989), p. 57.Google Scholar
9 Sark, W.G.J.H.M. van, Janssen, G., Croon, M.H.J.M. de, Giling, L.J., Semicond. Sci. Technol. 5, 16 (1990).10.1088/0268-1242/5/1/003Google Scholar
10 Heinecke, H., Veuhoff, E., Putz, N., Heyen, M., Balk, P., J. Electron. Mater. 13, 815 (1984).10.1007/BF02657928Google Scholar
11 Coltrin, M.E., Kee, R.J., and Evans, G.H., J. Electrochem. Soc. 136, 819 (1989).10.1149/1.2096750Google Scholar
12 Creighton, J.R., Moffat, H.K., and Baucom, K.C., Electrochem. Soc. Proc. 98–23, 75 (1998).Google Scholar
13 Hardtdegen, H., Dauelsberg, M., Kaufmann, P. and Kadinski, L., presented at the 8th European Workshop on Metal-Organic Vapour Phase Epitaxy and Related Growth Techniques, Prague, 1999 (unpublished).Google Scholar
14 Bergunde, T. (private communication).Google Scholar