Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-19T21:27:06.869Z Has data issue: false hasContentIssue false

Computation of the Porous Silicon Dielectric Function in the Supercell Model and Comparison with Experiment

Published online by Cambridge University Press:  15 February 2011

J. Tagüeeña-Martínez
Affiliation:
Centro de Investigación en Energia, Universidad Nacional Autónoma de México, Temixco, Morelos 62580, México
Y.G. Rubo
Affiliation:
Centro de Investigación en Energia, Universidad Nacional Autónoma de México, Temixco, Morelos 62580, México
M. Beltrán
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, México
C. Wang
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510, México
M. Cruz
Affiliation:
Escuela Superior de Ingenieria Mecánica y Elétrica, UC-IPN, México D.F., México
Get access

Abstract

We present the results for the imaginary part of the dielectric function of porous silicon, which were obtained with the tight-binding 128–atom supercell model for different porosities. The supercells have been chosen to allow the interconnection of the Si skeleton. We have analyzed also the effects of pore morphology. We have found that, at a fixed porosity, the developing of the surface, resulting in the increase of saturating hydrogen atoms, leads to a noticeable blueshift of the absorption edge.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cullis, A.G., Canham, L.T., and Calcott, P.D.J., J. Appl. Phys. 82, p. 909 (1997).Google Scholar
2. Calcott, P.D.J., Mater. Sci. Eng. B 51, p. 132 (1998).Google Scholar
3. Canham, L.T., Appl. Phys. Lett. 57, p. 1046 (1990).Google Scholar
4. Cruz, M., Wang, C., Beltrin, M.R., and Tagiiefia-Martinez, J., Phys. Rev. B 53, p. 3827 (1996).Google Scholar
5. Vázquez, E., Tagüeña-Martinez, J., Sansores, L.E., Wang, C., Beltrdn, M.R., to be published.Google Scholar
6. Buttard, D., Bellet, D., Dolino, G., and Baumbach, T., J. Appl. Phys. 83, p. 5814 (1998).Google Scholar
7. Rao, P.N., Schiff, E.A., Tsybeskov, L., and Fauchet, P., unpublished.Google Scholar
8. Cruz, M., Wang, C., Beltrdn, M.R., Tagiiefia-Martinez, J., and Rubo, Y.G., Phys. Rev. B 59, p. 15381 (1999).Google Scholar
9. Koshida, N., Koyama, H., Suda, Y. et al. , Appl. Phys. Lett. 63, p. 2774 (1993).Google Scholar