Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T05:34:49.928Z Has data issue: false hasContentIssue false

Computer Model of the Temperature and Carrier Concentration Induced in Si by Nanosecond and Picosecond Laser Pulses

Published online by Cambridge University Press:  15 February 2011

Arto Lietoila
Affiliation:
Stanford Electronics Laboratories, Stanford, California, 94305
James Gibbons
Affiliation:
Stanford Electronics Laboratories, Stanford, California, 94305
Get access

Abstract

A set of simultaneous equations for lattice temperature, carrier concentration and carrier temperature in Si is numerically solved for typical nanosecond and picosecond laser pulses. The calculated threshold energies required to reach Si melting temperature are consistent with measured thresholds to reach a flat-top reflectivity of ~ 70% for typical nanosecond pulses at 1.06 and .53 µm. In the picosecond regime, almost the entire pulse energy is at first stored in the carrier system, and a carrier temperature exceeding 30,000 K is achieved for a 3 J/cm2, 30 ps pulse at 1.06 µm. In this case, the surface carrier concentration reaches a high enough value to cause an enhanced reflectivity from the plasma lasting for at least 0.1 ns. The lattice temperature reaches 1410°C, while carriers relax their energy to the lattice after the pulse, and the energy stored in the carrier system would be enough to supply the heat of fusion at the silicon surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Auston, D. H., Golovchenko, J. A., Simons, A. L., Slusher, R. E., Smith, D. R., Surko, C. M., and Venkatesan, T. N. C., AIP Conf. Proc. 50, 11 (1979).CrossRefGoogle Scholar
2. Shvarev, K. M., Baum, B. A. and Gel'd, P. V., Sov. Phys. Solid State 16, 211 (1975).Google Scholar
3. Murakami, K., Gamo, K., Namba, S., Kawabe, M. and Aoyagi, Y., in Laser and Electron Beam Processing of Materials, edited by White, C. W. and Peercy, P. S., Academic Press 1980, p. 162.CrossRefGoogle Scholar
4. Gamo, K., this conference.Google Scholar
5. Brown, W. L., Ref. 3, p. 20.Google Scholar
6. Yoffa, E. J., Phys. Rev. B 21, 2415 (1980).CrossRefGoogle Scholar
7. Morin, F. J. and Maita, J. P., Phys. Rev. 96, 28 (1954).CrossRefGoogle Scholar
8. Murota, J., Arai, E., Kobayashi, K. and Kudo, K., J. Appl. Phys. 50, 804 (1979).CrossRefGoogle Scholar
9. Dzievior, J. and Schmid, W., Appl. Phys. Lett. 31, 346 (1977).CrossRefGoogle Scholar
10. Haug, A., Solid-State Electron. 21, 1281 (1978).CrossRefGoogle Scholar
11. Ho, C. Y., Powell, R. W. and Liley, P. E., J. Phys. Chem. Ref. Data 3, Suppl. 1, 1588 (1974).Google Scholar
12. Sze, S. M., Physics of Semiconductor Devices (Wiley, New York, 1969).Google Scholar
13. Smith, R. A., Semiconductors, 2nd Ed. (Cambridge Univ. Press, Cambridge, 1978).Google Scholar
14. Schumann, P. A. Jr. and Phillips, R. P., Solid State Electron. 10, 943 (1967).CrossRefGoogle Scholar
15. Berz, F., Cooper, R. W. and Fagg, S., Solid State Electron. 22, 293 (1979).CrossRefGoogle Scholar
16. Sigmon, T. W. and Gibbons, J. F., Appl. Phys. Lett. 15, 320 (1969).CrossRefGoogle Scholar
17. Kittel, C., Introduction to Solid State Physics, 4th Ed. (Wiley, New York, 1971), p. 232.Google Scholar
18. Brodsky, M. H., Title, R. S., Weiser, K. and Pettit, G. D., Phys. Rev. B 1, 2632 (1970).CrossRefGoogle Scholar
19. Hulthen, R., Physica Scripta 12, 342 (1975).CrossRefGoogle Scholar
20. Mitchell, A. R., Computational Methods in Partial Differential Equations (Wiley, New York, 1969).Google Scholar
21. Boyce, W. E. and Di Prima, R. C., Elementary Differential Equations, (Wiley, New York, 1965).Google Scholar
22. Liu, P. L., Yen, R., Bloembergen, N. and Hodgson, R. T., Ref. 3, p. 156.Google Scholar
23. Van Vechten, J. A. and Wautelet, M., to be published.Google Scholar
24. Thurmond, C. D., J. Electrochem. Soc. 122, 1133 (1975).CrossRefGoogle Scholar
25. Zellama, K., German, P., Squelard, S. and Bourgoin, J. C., J. Appl. Phys. 50, 6995 (1979).CrossRefGoogle Scholar
26. Lietoila, A. and Gibbons, J. F., to be published.Google Scholar