Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-09T05:38:48.842Z Has data issue: false hasContentIssue false

Conductance Fluctuations in Amorphous Silicon Nanoparticles

Published online by Cambridge University Press:  01 February 2011

T. J. Belich
Affiliation:
School of Physics and Astronomy, The University of Minnesota, Minneapolis, MN 55455, USA
Z. Shen
Affiliation:
Dept. of Electrical and Computer Engineering, The University of Minnesota, Minneapolis, MN 55455, USA
C. Blackwell
Affiliation:
School of Physics and Astronomy, The University of Minnesota, Minneapolis, MN 55455, USA
S. A. Campbell
Affiliation:
Dept. of Electrical and Computer Engineering, The University of Minnesota, Minneapolis, MN 55455, USA
J. Kakalios
Affiliation:
School of Physics and Astronomy, The University of Minnesota, Minneapolis, MN 55455, USA
Get access

Abstract

Hydrogenated amorphous silicon nanoparticles with an average diameter of 150 nm have been synthesized by high-density plasma chemical vapor deposition. The particles are deposited onto a conducting substrate and are then surrounded by an insulating matrix, electrically isolating the particles. Electrical contact is made to the top of each nanoparticle; the current-voltage characteristics of the nanoparticles indicate that transport is space-charge limited through the a-Si:H. The spectral density of the current fluctuations in the a-Si:H nanoparticles is well described by a 1/f frequency dependence for frequency f. However, the octave separation dependence of the correlation coefficients of the noise power for the nanoparticles are very well described by an ensemble of fluctuators whose amplitudes are independently modulated in parallel, rather than the serial kinetics typically observed in bulk a-Si:H.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ostraat, M. L., Blauwe, J. W. De, Green, M. L., Bell, L. D., Brongersma, M. L., Casperson, J., Flagen, R. C., and Atwater, H. A., Appl. Phys. Lett. 79, 433 (2001).10.1063/1.1385190Google Scholar
2 Nishiguchi, K., Zhao, X., and Oda, S., J. Appl. Phys. 92, 2748 (2002).10.1063/1.1497703Google Scholar
3 Park, N.-M., Kim, T. S., and Park, S. J., Appl. Phys. Lett. 78, 2575 (2001).10.1063/1.1367277Google Scholar
4 Cabarrocas, P. Roca i, Morral, A. Fontcuberta i, and Poissant, Y., Thin Solid Films 403-404, 39 (2002).10.1016/S0040-6090(01)01656-XGoogle Scholar
5 Wronski, C. R., Pearce, J. M., Koval, R. J., Niu, X., Ferlauto, A. S., Koh, J., and Collins, R. W., Mater. Res. Soc. Symp. Proc. 715, 459 (2002).10.1557/PROC-715-A13.4Google Scholar
6 Thompson, S., Perrey, C. R., Carter, C. B., Belich, T. J., Kakalios, J., and Kortshagen, Uwe, J. Appl. Phys. 97, 34310 (2005).10.1063/1.1849435Google Scholar
7 Shen, Z., Kim, T., Kortshagen, U., McMurry, P. H., and Campbell, S. A., J. Appl. Phys. 94, 2277 (2003).10.1063/1.1591412Google Scholar
8 Shen, Z., Kortshagen, U., McMurry, P. L. and Campbell, S. A., J. Appl. Phys. 96, 2204 (2004).10.1063/1.1763991Google Scholar
9 Mott, N. F. and Gurney, R. W., Electronic Processes in Ionic Solids, Oxford University Press, London pp. 168173 (1940); R. W. Smith and A. Rose, Phys. Rev. 97, 1531 (1955).Google Scholar
10 Lampert, M. A. and Mark, P., Injection Currents in Solids (New York Academic Press, 1970); A. Rose, Concepts in Photoconductivity and Allied Problems (Robert E. Krieger, 1978).Google Scholar
11 Parman, C. E., Israeloff, N.E., and Kakalios, J., Phys. Rev. B 47, 12578 (1993); G. M. Khera and J. Kakalios, Phys. Rev. B 56, 1918 (1997).10.1103/PhysRevB.47.12578Google Scholar
12 Belich, T. J., Shen, Z., Campbell, S. A., and Kakalios, J., Proceedings of the SPIE vol. 5112 (SPIE, Bellingham, WA, 2003), pg. 67.Google Scholar
13 Weissman, M. B., Rev. Mod. Phys. 60, 537 (1988); Rev. Mod. Phys. 65, 829 (1993).10.1103/RevModPhys.60.537Google Scholar
14 Restle, P. J., Weissman, M. B., and Black, J. D. J. Appl. Phys. 54, 5844 (1983); P. J. Restle, R. J. Hamilton, M. B. Weissman, and M. S. Love, Phys Rev. B 31, 2254 (1985).10.1063/1.331809Google Scholar