Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T04:47:38.328Z Has data issue: false hasContentIssue false

Core-Level Electron Binding Energy Change of Evaporated Pd

Published online by Cambridge University Press:  22 February 2011

Shigemi Kohiki*
Affiliation:
Matsushita Technoresearch Inc., Moriguchi, Osaka 570, Japan
Get access

Abstract

Positive core-electron binding energy shifts in small palladium clusters supported on cadmium telluride substrate are shown to arise from the initial-state effects those are more sensitive to cluster size than are the final-state properties and the mean valence band electron binding energy is primarily responsible for the Pd 3d5/2 electron binding energy in lower coverage region (Pd ≲ 1×1015 atoms-cm−2).

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Egelhoff, W.F. Jr. and Tibbetts, G.G., Phys. Rev. B19, 5028 (1979).Google Scholar
2. Wertheim, G.K., Dicenzo, S.B. and Youngquist, S.E., Phys. Rev. Lett. 51, 2310 (1983). Wertheim et al. pointed out that the electron BE shift for small Au clusters on amorphous carbon substrate was due to finalstate effect.Google Scholar
3. Mason, M.G., Phys. Rev. B27, 748 (1983).Google Scholar
4. Takasu, Y., Unwin, R., Tesche, B., Bradshaw, A.M. and Grunze, M., Surf. Sci. 77, 219 (1978).Google Scholar
5. Roulet, H., Mariot, J.-M., Dufour, G. and Hague, C.F., J. Phys. F 10, 1025 (1980).Google Scholar
6. Oberli, L., Monot, R., Mathieu, H.J., Landolt, D. and Buttet, J., Surf. Sci. 106, 301 (1981).Google Scholar
7. Liang, K.S., Salaneck, W.R. and Aksay, I.A., Solid State Commun. 19, 329 (1976).Google Scholar
8. Phillips, J.C., Bonds and Bands in Semiconductors, (Academic, New York, 1973).Google Scholar
9. Penn, D.R., J. Electron Spectrosc. Relat. Phenom. 9, 29 (1976).CrossRefGoogle Scholar
10. Kohiki, S., Oki, K., Ohmura, T., Tsuji, H. and Onuma, T., Jpn. J. Appl. Phys. 23, L15 (1984).CrossRefGoogle Scholar
11. The number of Cd and Te atoms near the CdTe surface was calculated from the peak intensities of Cd 3d5/2 and Te 3d5/2 using the method described in Ref. 12.Google Scholar
12. Kohiki, S., Appl. Surf. Sci. 17, 497 (1984).Google Scholar
13. Gadzuk, J.W., in Photoemission and The Electronic Properties of Surfaces, edited by Feuerbacher, B., Fitton, B., and Willis, R.F. (John Wily, Chichester, 1978) p. 177.Google Scholar
14. Shirley, D.A., in Photoemission in Solids, edited by Cardona, M., and Ley, L. (Springer, Berlin, 1978) Vol.1, p. 177.Google Scholar
15. Fadley, C.S., Hagstrom, S.B.M., Klein, M.P., and Shirley, D.A., J. Chem. Phys. 48, 3779 (1968).Google Scholar
16. Wagner, C.D., Faraday Discuss. Chem. Soc. 60, 291 (1975), and C.D. Wagner, L.H. Gale, and R.H. Raymond, Anal. Chem. 51, 466 (1979).CrossRefGoogle Scholar
17. Thomas, T.D., J. Electron Spectrosc. Relat. Phenom. 20, 117 (1980).Google Scholar
18. Wigner, E. and Bardeen, J., Phys. Rev. 48, 84 (1935).CrossRefGoogle Scholar
19. Kowalczyk, S.P., Ley, L., McFeely, F.R., Pollak, R.A., and Shirley, D.A., Phys. Rev. B9, 381 (1974).Google Scholar