Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T11:23:15.466Z Has data issue: false hasContentIssue false

Correlation Among Material Quality, Performance and Reliability of High Power and High Frequency AlGaN/GaN HFET

Published online by Cambridge University Press:  01 February 2011

Yasushi Nanishi*
Affiliation:
nanishi@se.ritsumei.ac.jp, Ritsumeikan University, Department of Photonics, Kusatsu, Japan
Get access

Abstract

Performances of AlGaN/GaN HFETs have much improved recently and very high potential of this hetero- structure for high power and high frequency electronic devices has been verified. Application of new device technologies such as field plate, recessed gate, digital pre-distortion circuit and dual field plate was essential to realize such high device performances both at 2 GHz, 5GHz and 26 GHz. However, practical requirements on the quality and structure of these material systems for production of these devices are still not clear. Extensive studies on correlation among material quality, device performance and reliability were investigated under Japanese NEDO project. Firstly, this paper reviews recent progress of the performances of high power and high frequency AlGaN/GaN HFETs. Then, several interesting results which suggest practical requirements on material quality and structure will be discussed based on our extensive characterization studies in terms of device performances and reliabilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Okamoto, Y., Ando, Y., Hataya, K., Nakayama, T., Miyamoto, H., Inoue, T., Senda, M., Hirata, K., Kosaki, M., Shibata, N., and Kuzuhara, M., 2004 IEEE MTT-S Int. Microwave Symp., p. 1351 (2004).Google Scholar
2. Ando, Y., Okamoto, Y., Hataya, K., Nakayama, T., Miyamoto, H., Inoue, T., and Kuzuhara, M., 2003 IEDM Tech. Digest, p. 563 (2003).Google Scholar
3. Ando, Y., Okamoto, Y., Miyamoto, H., Nakayama, T., Kuzuhara, M., IEEE Electron Device Lett., 24, p. 289 (2003).Google Scholar
4. Okamoto, Y., Ando, Y., Miyamoto, H., Nakayama, T., Kasahara, K., Inoue, T., Kuzuhara, M., 2003 IEEE MTT-S digest, p. 225 (2003).Google Scholar
5. Okamoto, Y., Ando, Y., Hataya, K., Nakayama, T., Miyamoto, H., Inoue, T., Senda, M., Hirata, K., Kosaki, M., Shibata, N., and Kuzuhara, M., IEEE Trans. Microwave Theory Tech., 52, p. 2536 (2004).Google Scholar
6. Ando, Y., Wakejima, A., Okamoto, Y., Nakayama, T., Ota, K., Yamanoguchi, K., Murase, Y., Kasahara, K., Matsunaga, K., Inoue, T., and Miyamoto, H., 2005 IEEE IEDM Digest, p. 23–3 (2005).Google Scholar
7. Wakejima, A., Matsunaga, K., Ota, K., Okamoto, Y., Ando, Y., Nakayama, T., and Miyamoto, H., 2006 IEEE MTT-S Int. Microwave Symp., p. 1360 (2006).Google Scholar
8. Wakejima, A., Nakayama, T., Ota, K., Okamoto, Y., Ando, Y., Kuroda, N., Tanomura, M., Matsunaga, K., and Miyamoto, H., Electron. Lett. 42, p. 1349 (2006).Google Scholar
9. Okamoto, Y., Nakayama, T., Ando, Y., Wakejima, A., Matsunaga, K., Ota, K., and Miyamoto, H., Electron. Lett. 43, p. 927 (2007).Google Scholar
10. Murase, Y., Wakejima, A., Inoue, T., Yamanoguchi, K., Tanomura, M., Nakayama, T., Okamoto, Y., Ota, K., Ando, Y., Kuroda, N., Matsunaga, K., and Miyamoto, H., 2007 Comp. Semicon. Integ. Circuit Symp., p.1 (2007).Google Scholar
11. Lampard, M. A., phys. Rev. 103, p. 1648 (1956).Google Scholar
12. Hinoki, A., Kikawa, J., Yamada, T., Tsuchiya, T., Kamiya, S., Kurouchi, M., Kosaka, K., Araki, T., Suzuki, A., and Nanishi, Y., Appl. Phys. Express 1, p. 011103 (2008).Google Scholar
13. Kikawa, J., Yamada, T., Tsuchiya, T., Kamiya, S., Kosaka, K., Hinoki, A., Araki, T., Suzuki, A., and Nanishi, Y., phys. stat. sol. (c) 4, p. 2678 (2007).Google Scholar