Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-08T02:52:01.447Z Has data issue: false hasContentIssue false

Correlation Between Nonlinear Charge Transfer and Behaviour of Tc in YBa2Cu3O7-y System

Published online by Cambridge University Press:  26 February 2011

Y. Zhao
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, P. O. Box 1, Kensington, NSW 2033, Australia
H. K. Liu
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, P. O. Box 1, Kensington, NSW 2033, Australia
S. X. Dou
Affiliation:
School of Materials Science and Engineering, The University of New South Wales, P. O. Box 1, Kensington, NSW 2033, Australia
Get access

Abstract

The charge transfer in YBa2CU3O7-y system have been analysed by bond valence sum calculation. It is found that there exists an additional effective charge-transfer between the CuO2 planes and the CuO chain which varies nonlinearly with the oxygen stoichiometry and can be expressed as q = 0.151 exp(∼0.007/y4) + 0.35 exp(0.5 – 0.5/y4). This nonlinear charge-transfer is associated with the structural transitions of orthorhombic (I)-to-orthorhombic(II) and orthorhombic(II)-to-tetragonal symmetry, and thus related to the oxygen ordering in the CuO chains. A new relationship between the mobile hole number P(2) the localised hole number P(l) and the total hole number P has been established as P(2) = P - P(1), P(1) = 0.5 - y - q. The results also show that the 90 K and 60 K plateaus in Tc as a function of oxygen stoichiometry correspond to the plateaus in the curve of q versus y, indicating that both the nonlinear variations of Tc and the charge-transfer with the oxygen stoichiometry are intrinsically correlated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhao, Y., Liu, H. K. and Dou, S. X., Physica C 179 (1991) 207.Google Scholar
2. Tokura, Y., Terranee, J. B., Huang, T. C. and Nazzal, A. I., Phys. Rev. B 38 (1988) 7156.Google Scholar
3. Brown, I. D., J. Solid State Chem. 82 (1989) 122.Google Scholar
4. Jorgensen, J. D., Veal, B. W., Paulikas, A. P., Nowicki, L. J., Crabtree, G. W., Claus, H. and Kwok, W. K., Phys. Rev. B 41 (1990) 1863.Google Scholar
5. Cava, R. J., Hewat, A. W., Hewat, E. A., Batlogg, B., Marezio, M., Rabe, K. M., Krajewski, J. J., Peck, W. F. Jr, and Rupp, L. W. Jr, Physica C 165 (1990) 419.Google Scholar
6. Minerva, T. and Calandra, C., Physica C 170 (1990) 532.Google Scholar
7. Miceli, P. F., Tarascon, J. M., Greene, L. H., Bauboux, P., Jorgensen, J. D., Rhyne, J. J. and Neumann, D. A., Phys. Rev. B 37 (1988) 5932.Google Scholar
8. Shafer, M. W., Penney, T., Olson, B. L., Greene, R. L. and Kock, R. H., Phys. Rev. B 39 (1989) 2914.Google Scholar
9. Wang, Z. Z., Clayhold, J. and Ong, N. P., Phys. Rev. B 36 (1987) 7222.Google Scholar
10. Cava, R. J., Batlogg, B., Chen, C. H., Rietman, E. A., Zahurak, S. M. and Werder, D., Phys. Rev. 36 (1987) 5719.Google Scholar
11. Talion, J. L., Physica C 168 (1990) 85.Google Scholar
12. Brown, I. D. and Altermett, D., Acta Crystallogr. B41 (1985) 244.Google Scholar
13. Karpe, N. and Rao, K. V., Physica C 153–155 (1988) 1353.Google Scholar
14. Aukrust, T., Novotný, M. A., Rikvold, P. A. and Landau, D. P., Phys. Rev. B 41 (1990) 8772.Google Scholar