Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T04:03:19.280Z Has data issue: false hasContentIssue false

Correlation Between On/Off Ratio and Electron Traps in Hole-Only Carbon-Nanotube-Enabled Vertical Field Effect Transistors

Published online by Cambridge University Press:  31 January 2011

Mitchell Austin McCarthy
Affiliation:
mitchmcc@ufl.edu, University of Florida, Materials Science and Engineering, Gainesville, Florida, United States
Bo Liu
Affiliation:
liubo12@ufl.edu, University of Florida, Physics, Gainesville, Florida, United States
Andrew Gabriel Rinzler
Affiliation:
rinzler@phys.ufl.edu, University of Florida, Physics, Gainesville, Florida, United States
Get access

Abstract

Single wall carbon nanotube enabled vertical field effect transistors (VFETs) are studied and the dependence of the on/off ratio on the relative number of electron traps is investigated. Current versus voltage measurements on several VFETs with varying interfacial trap densities in the vicinity of the nanotube network/polymer active layer junction are taken. It is found that the on/off ratio of the VFET changes from 1600 to 20 for typical operational currents as the onset gate voltage in the off-to-on transfer curve shifts from 94 V to 72 V. Such a strong dependence on trapped charge motivates future work to uncover the mechanism of charge trapping.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ishibashi, T. Yamada, J. Hirano, T. Iwase, Y. Sato, Y. Nakagawa, R. Sekiya, M. Sasaoka, T. and Urabe, T.Active matrix organic light emitting diode display based on “Super Top Emission” technology,” Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 43924395, May 2006.Google Scholar
[2] Mizukami, M. Hirohata, N. Iseki, T. Ohtawara, K. Tada, T. Yagyu, S. Abe, T. Suzuki, T. Fujisaki, Y. Inoue, Y. Tokito, S. and Kurita, T.Flexible AM OLED panel driven by bottom-contact OTFTs,” Ieee Electron Device Letters, vol. 27, pp. 249251, Apr 2006.Google Scholar
[3] Ohta, S. Chuman, T. Miyaguchi, S. Satoh, H. Tanabe, T. Okuda, Y. and Tsuchida, M.Active matrix driving organic light-emitting diode panel using organic thin-film transistors,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 44, pp. 36783681, Jun 2005.Google Scholar
[4] Liu, B. McCarthy, M. A. Yoon, Y. Kim, D. Y. Wu, Z. So, F. Holloway, P. H. Reynolds, J. R. Guo, J. and Rinzler, A. G.Carbon-Nanotube-Enabled Vertical Field Effect and Light-Emitting Transistors,” Advanced Materials, vol. 20, 2008.Google Scholar
[5] Nakamura, K. Hata, T. Yoshizawa, A. Obata, K. Endo, H. and Kudo, K.Metalinsulator-semiconductor-type organic light-emitting transistor on plastic substrate,” Applied Physics Letters, vol. 89, pp. -, Sep 4 2006.Google Scholar
[6] Xu, Z. Li, S. H. Ma, L. Li, G. and Yang, Y.Vertical organic light emitting transistor,” Applied Physics Letters, vol. 91, pp. -, Aug 27 2007.Google Scholar
[7] Rinzler, A. G. Liu, J. Dai, H. Nikolaev, P. Huffman, C. B. Rodriguez-Macias, F. J., Boul, P. J., Lu, A. H. Heymann, D. Colbert, D. T. Lee, R. S. Fischer, J. E. Rao, A. M. Eklund, P. C. and Smalley, R. E.Large-scale purification of single-wall carbon nanotubes: process, product, and characterization,” Applied Physics a-Materials Science & Processing, vol. 67, pp. 2937, Jul 1998.Google Scholar
[8] Wu, Z. C. Chen, Z. H. Du, X. Logan, J. M. Sippel, J. Nikolou, M. Kamaras, K. Reynolds, J. R. Tanner, D. B. Hebard, A. F. and Rinzler, A. G.Transparent, conductive carbon nanotube films,” Science, vol. 305, pp. 12731276, Aug 27 2004.Google Scholar