Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-17T11:15:26.423Z Has data issue: false hasContentIssue false

Correlation of Rutherford Backscattering and Electrical Measurements on Si Implanted InP Following Rapid Thermal and Furnace Annealing

Published online by Cambridge University Press:  25 February 2011

G. Bahir
Affiliation:
University of California, Dept. of Electrical and Computer Engineering, Santa Barbara, CA 93106
J.L. Merz
Affiliation:
University of California, Dept. of Electrical and Computer Engineering, Santa Barbara, CA 93106
J.R. Abelson
Affiliation:
Stanford Electronics Laboratories, Stanford, CA 94305
T.W. Sigmon
Affiliation:
Stanford Electronics Laboratories, Stanford, CA 94305
Get access

Abstract

We report on the structural and electrical properties of (100) InP resulting from the implantation of 180 keV Si+ and subsequent annealing. The radiation damage produced by implantation at substrate temperatures from 77 to 480 K is evaluated using MeV He ion channeling. Varying degrees of recrystallization are found depending on the implant temperature and choice of furnace vs. rapid thermal annealing. Samples implanted at 25°C to a dose of 3.3.1014ions/cm2 continue to display structural disorder regardless of annealing procedures. In contrast, implantation at 200°C to 3.3-1014ions/cm2 produces a low but measurable damage level. Further annealing lowered the disorder to a level similar to that of unimplanted material.

The electrical activation of both low and high fluence ion doses is nearly the same at the optimal conditions for rapid thermal annealing (RTA) or furnace annealing (FA). However the electron mobility is found to be higher after hot implantation and RTA. The electrical profile after hot implantation is wider than the profile after RT implants and FA.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lorenzo, J. P., Davies, D. E., Soda, K. J., Ryan, T. G. and McNally, P. J., Laser Solid Interactions and Transient Processing of Materials (North Holland, New York, 1983), p. 683.Google Scholar
2. Vaidynathan, K. V. and Dunlap, H. L., Mat. Res. Soc. Symp. Proc., 23, 687 (1984).CrossRefGoogle Scholar
3. Kennedy, E. F., Appl. Phys. Lett., 38, 375 (1981).CrossRefGoogle Scholar
4. Rao, C. S. Rama, Sundaram, S., Schmidt, R. L. and Comas, J., J. Appl. Phys., 54, 1808 (1983).Google Scholar
5. Auvray, P., Guivarch, A., L'Haridon, H., Pelous, G. and Salvi, M., J. Appl. Phys., 53, 6202 (1982).Google Scholar
6. Kirillov, D., Merz, J. L., Kalish, R. and Shatas, J., J. Appl. Phys., 52, 531 (1985).Google Scholar
7. Kirillov, D. and Merz, J. L., Proc. of Material Research Society Meeting -Nov. 1984 (to be published).Google Scholar
8. Yuen, A. T. and Long, S. I.., MRS Conference Proceedings-Apr. 1985 Google Scholar
9. Duhamel, N., Rao, E. V. K., Gauneau, M., Thibierge, H. and Mircea, A., J. of Crystal Growth, 64, 186 (1983).CrossRefGoogle Scholar
10. Ambridge, T., Stevenson, J. L. and Redstall, R. M., J. Electrochem. Soc., 127, 222 (1980).Google Scholar
11. Ambridge, T., Ashen, D. J., Electron. Lett., 15, 647 (1979).Google Scholar
12. Bahir, G., Merz, J. L., Abelson, J. R. and Sigmon, T.-W. (to be published).Google Scholar
13. Grimaldi, M. G., Paine, B. M., Nicolet, M. A. and Sadana, D. K., J. Appl. Phys., 52, 4038 (1981).Google Scholar