Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T01:25:54.462Z Has data issue: false hasContentIssue false

Creep Behavior of MoSi2-SiC Composites

Published online by Cambridge University Press:  25 February 2011

Darryl P. Butt
Affiliation:
Materials Division, P.O. Box 1663, M.S. G755, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Stuart A. Maloy
Affiliation:
Materials Division, P.O. Box 1663, M.S. G755, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. Kung
Affiliation:
Materials Division, P.O. Box 1663, M.S. G755, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
David A. Korzekwa
Affiliation:
Materials Division, P.O. Box 1663, M.S. G755, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
John J. Petrovic
Affiliation:
Materials Division, P.O. Box 1663, M.S. G755, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Using a cylindrical indenter, the indentation creep behavior of hot pressed and HIPed MoSi2-SiC composites containing 0-40% SiC by volume, was characterized at 1000-1200°C, 258-362 MPa. The addition of SiC affects the creep behavior of MoSi2 in a complex manner by pinning grain boundaries during pressing, thus leading to smaller MoSi2 grains; by obstructing or altering both dislocation motion and grain boundary sliding; and by increasing the overall yield stress of the material. Comparisons are made between indentation and compressive creep studies. It is shown that under certain conditions, compressive creep and indentation creep measurements yield comparable results after correcting for effective stresses and strain rates beneath the indenter.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vasudevan, A. K. and Petrovic, J. J., Mat. Sci. and Engr., A155, 117 (1992).Google Scholar
2. Yu, E. C. and Li, J. C. M.., Phil. Mag., 36 141 811825 (1977); J. Mater. Sci., 12, 2214-2222 (1977).Google Scholar
3. Chu, S. N. G. and li, J. C. M., J. Mater. Sci., 12, 22002208 (1977); Mat. Sci. and Engr., 39, 1-10 (1979).Google Scholar
4. Roebuck, B. and Almond, E. A., J. Mater. Sci. Lent., 1, 519521 (1982).Google Scholar
5. Li, W. B. and Warren, R., Acta Metall. Mater., 41 [10] 30653069 (1993).Google Scholar
6. Backofen, W. A., Deformation Processing, Addison-Wesley Publishing Co., Reading, Ma, pp. 135, 1972.Google Scholar
7. Butt, D. P., Maloy, S. A., Kung, H., Korzekwa, D. A., and Petrovic, J. J., to be submitted to J. Am. Ceram. Soc.Google Scholar
8. Sadananda, K., Feng, C. R., Jones, H. N., and Petrovic, J. J., Mat. Sci. and Engr., A155, 227239 (1992); in Structural Intermetallics, Proceedings of the First International Symposium on Structural Intermetallics, R. Dardia et al. (Eds.), TMS, Pittsburgh, PA, 809-818, 1993.Google Scholar
9. Langdon, T. G., in Deformation of Ceramic Materials, pp 101126, Bradt, R. C. and Tressler, R. E. (Eds.), Plenum Press, New York, NY (1975).Google Scholar
10. Cotton, J. D., Kim, Y. S., and Kaufman, M. J., Mater. Sci. and Engr., A144, 287291 (1991).Google Scholar
11. Kim, Y. S., Johnson, M. R., Abbaschian, R., and Kaufman, M. J., in Hieh-Temperature Ordered Intermetallic Alloys IV, Mat. Res. Soc. Symp. Proc., Vol. 213, 839845 (1991).Google Scholar
12. Jacobson, N. S., Lee, K. N., Maloy, S. A., and Heuer, A. H., J. Am. Ceram. Soc., 76 [8] 20052009 (1993).Google Scholar