Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-01T22:24:31.368Z Has data issue: false hasContentIssue false

Crystallization Mechanism of Amorphous Mullite and the Al2O3-SiO2 Phase Diagram

Published online by Cambridge University Press:  14 March 2011

Waltraud M. Kriven*
Affiliation:
Dept. of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, IL 61801, U.S.A.
Get access

Abstract

Recent progress in the crystallization of amorphous mullite (3Al2O3•2SiO2) and yttrium aluminate (Y3Al5O12, 5Al2O3•3Y2O3 or “YAG”) beads and fibers is reviewed. Studies were made by differential thermal analyses, (DTA, DSC), synchrotron X-ray diffraction and Rietveld profile fitting, HREM, EDS and SEM. Crystallization kinetics, activation energies and microstructures were determined, leading to temperature-time-transformation (T-T-T) curves. The crystallization of mullite from the solid state proceeds by formation of large-grained, pseudo-tetragonal mullite of composition 70 mol% Al2O3, which is highly strained and which contains <10 nm silica-containing inclusions. During further heat treatments, the inclusions react with the first-formed mullite yielding single phase, orthorhombic mullite of 60 mol% Al2O3. Recrystallization also occurs on further heating with a significant reduction of grain size, in a manner similar to recrystallization in brass. These observations (using more modern and sensitive characterization techniques) suggest the presence of a peritectic-like, syntectic or syntectoidal invariant reaction in the Al2O3-SiO2 phase diagram. Further work needs to be done to ascertain whether the reaction is an equilibrium or non-equilibrium phenomenon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mullite and Mullite Matrix Composites, ed. by Somiya, S., Davis, R. F. and Pask, J. A.. (The American Ceramic Society, publishers, Westerville, Ohio, 1990). (Ceramic Transactions, vol. 6).Google Scholar
2. Mullite and Mullite Matrices, ed. Schneider, H., Okada, K. and Pask, J. A.,. John Wiley and Sons, New York, 1994).Google Scholar
3. Johnson, B. R. and Kriven, W. M., J. Mater Res., 16 [6] 17951805 (2001).Google Scholar
4. Johnson, B. R., Kriven, W. M. and Schneider, J., J. Europ. Ceram. Soc., 21 25412562 (2001).Google Scholar
5. Kriven, W. M., Zhu, D. and Jilavi, M. H., Weber, K. R., Cho, B., Felten, J., and Nordine, P. C.. Ceramic Microstructures, ed. Tomsia, A. P. and Glaeser, A. M., (Plenum, 1998) pp. 173180.Google Scholar
6. Weber, J. K. R., Cho, B., Hixson, A. D., Abadie, J. G., Nordine, P. C., Kriven, W. M., Johnson, B. R. and Zhu, D., J. Europ. Ceram. Soc., 19 [13] 25432550 (1999).Google Scholar
7. Kriven, W. M., Palko, J., Sinogeikin, S., Bass, Jay D., Sayir, A., Brunauer, G., Boysen, H., Frey, F. and Schneider, J., J. Europ. Ceram. Soc., 19 [13] 25292541 (1999).Google Scholar
8. Kriven, W. M., Palko, J., Sinogeikin, S., Jay Bass, D., Sayir, A., Brunauer, G., Boysen, H., Frey, F. and Schneider, J., J. Europ. Ceram. Soc., 19 [13] 25292541 (1999).Google Scholar
9. Brunauer, G., Boysen, H., Frey, F., Hansen, T. and Kriven, W., Zeitschrift für Kristallographie, 216 284290 (2001).Google Scholar
10. Palko, J. W., Sayir, A., Sinogeikin, S. V., Kriven, W. M. and Bass, J. D., J. Am. Ceram. Soc., (2002), in press.Google Scholar
11. Okada, J., Nature, 191 10001001 (1961).Google Scholar
12. Ban, T. and Okada, K., J. Am. Ceram. Soc., 75[1] 227230 (1992).Google Scholar
13. Okada, K., Ban, T. and Yasumori, A., Europ. J. Solid State Inorg. Chem. 32 683692 (1995).Google Scholar
14. Ban, T., Hayashi, S., Yasumori, A. and Okada, K., J. Mater. Res. 11[6] 14211427 (1996).Google Scholar
15. Ban, T., Hayashi, S., Yasumori, A. and Okada, K. J. Euro. Ceramic. Soc., 16 127132 (1996).Google Scholar
16. Takei, T., Kameshima, Y., Yasumori, A. and Okada, K., J. Am. Ceram. Soc., 82[10] 28762880 (1999).Google Scholar
17. Takei, T., Kameshima, Y., Yasumori, A., Okada, K., J. Mater. Res. 15 [1] 186193 (2000).Google Scholar
18. Takei, T., Kameshima, Y., Yasumori, A. and Okada, K., J. Europ. Ceram. Soc., 21 (2001) in press.Google Scholar
19. Fischer, R. X., Schneider, H. and Schmücker, M., Am. Mineral. 79[9-10] 983990 (1994).Google Scholar
20. Fischer, R. X., Schneider, H. and Voll, D., J. Europ. Ceram. Soc., 16 109113, (1996).Google Scholar
21. Schneider, H. and Rymon-Lipinski, R. T., J. Am. Ceram. Soc., 71 [3] C162–C164 (1988).Google Scholar
22. Schneider, H., Fischer, R. X. and Voll, D., J. Am. Ceram. Soc., 76 [7] 18791881 (1993).Google Scholar
23. Li, D. X. and Thompson, W. J., J. Mater. Res., 6[4] 819824 (1991).Google Scholar
24. Aksay, I. A. and Pask, J. A., J. Am. Ceram. Soc. 58 [11-12] 507512 (1975).Google Scholar
25. Kriven, W. M. and Pask, J. A., J. Amer. Ceram. Soc., 66 [9], (1983) 649654.Google Scholar
26. Sayir, A. and Farmer, S. C., in Ceramic Matrix Composites – Advanced High Temperature Structural Materials, ed. Lowden, R. A., Ferber, M. A., Hjellman, J. R., Chawla, K. K., DiPietro, S. G., (Mater. Res. Soc. Proc. 365, Pittsburgh, PA, 1995) pp. 1120.Google Scholar
27. Elements of Materials Science Vlack, L. H. Van, (Addison-Wesley, 2nd. Edition, 1964), pp 152153.Google Scholar
28. Gordon, P., in Principles of Phase Diagrams in Materials Systems. (Mc-Graw-Hill, 1968) pp 183184.Google Scholar
29. Aramaki, S. and Roy, R., J. Am. Ceram. Soc. 45 [5] 229242 (1962).Google Scholar
30. Cameron, W. A., Am. Mineral. 62 747755 (1977).Google Scholar