Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T22:04:05.492Z Has data issue: false hasContentIssue false

Crystallization of Bulk Zr48Nb8Cu14Ni12Be18Metallic Glass

Published online by Cambridge University Press:  17 March 2011

Y.X. Zhuang
Affiliation:
Department of Physics, Building 307, Technical University of Denmark, DK-2800 Lyngby, Denmark
L. Gerward
Affiliation:
Department of Physics, Building 307, Technical University of Denmark, DK-2800 Lyngby, Denmark
J.Z. Jiang
Affiliation:
Department of Physics, Building 307, Technical University of Denmark, DK-2800 Lyngby, Denmark
J.S. Olsen
Affiliation:
Niels Bohr Institute, Oersted Laboratory, DK-2100 Copenhagen, Denmark
Y. Zhang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing, 100080, P.R. China.
W.H. Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing, 100080, P.R. China.
Get access

Abstract

The crystallization of bulk Zr48Nb8Cu14Ni12Be18metallic glass has been investigated by differential scanning calorimetry (DSC) and X-ray powder diffraction. The activation energies of glass transition and crystallization for the glass obtained using Kissinger analysis from the shift of the peak temperature in the DSC curve are 470 and 235 kJ/mol, respectively. The effect of applied pressure on crystallization is studied by in situ high-pressure and high-temperature X-ray powder diffraction using synchrotron radiation. It is found that the crystallization temperature increases with pressure having a slope of 9.5 K/GPa in the range of 0-4.4 GPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, A., Acta Mater. 48, 279 (2000).Google Scholar
2. Johnson, W. L., MRS Bulletin, 24, 42 (1999).Google Scholar
3. Schroers, J., Masuhr, A., Johnson, W. L., and Busch, R., Phys. Rev. B 60, 11855 (1999).Google Scholar
4. Jiang, J. Z., Olsen, J. S., Gerward, L., Abdali, S., Eckert, J., Boer, N. Schlorke-de, Schultz, L., Truckenbrodt, J., and Shi, P. X., J. Appl. Phys. 87, 2664 (2000).Google Scholar
5. Jiang, J. Z., Zhou, T. J., Rasmussen, H. K., Kuhn, U., Eckert, J., and Lathe, C., Appl. Phys. Lett. 77, 3553 (2000).Google Scholar
6. Zhuang, Y. X., Jiang, J. Z., Zhou, T. J., Rasmussen, H., Gerward, L., Mezouar, M., Crichton, W., and Inoue, A., Appl. Phys. Lett. 77, 4133 (2000).Google Scholar
7. Jiang, J. Z., Zhuang, Y. X., Rasmussen, H., Nishiyama, N., Inoue, A., and Lathe, C., Europhys. Lett. 54, 182 (2001).Google Scholar
8. Zhang, Y., Zhao, D. Q., Wang, R. J., Pan, M. X., Wang, W. H., Mater. Trans. JIM, 41, 1423 (2000).Google Scholar
9. Zhuang, Y. X., Wang, W. H., Zhang, Y., Pan, M. X., and Zhao, D. Q., Appl. Phys. Lett. 75, 2392 (1999); Y. X. Zhuang and W. H. Wang, J. Appl. Phys. 87, 8209 (2000).Google Scholar
10. Olsen, J. S., Gerward, L., and Jiang, J. Z., J. Phys. Chem. Solids 60, 229 (1999).Google Scholar
11. Decker, D. L., J. Appl. Phys. 42, 3239 (1971).Google Scholar
12. Lasocka, T. M., Mater. Sci. Eng. 23, 173 (1976).Google Scholar
13. Kissinger, H. E., J. Res. Natl. Bur. Stand. 57, 217 (1956).Google Scholar
14. Material Science of Amorphous Alloys, ed. by Masumoto, T., (Ohmu, Tokyo, 1983), p. 39.Google Scholar