Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T14:37:49.824Z Has data issue: false hasContentIssue false

Deep Borehole Disposal of Plutonium

Published online by Cambridge University Press:  01 February 2011

Fergus G.F. Gibb
Affiliation:
Immobilisation Science Laboratory, Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, UK
Kathleen J. Taylor
Affiliation:
Department of Geography, University of Sheffield, Sheffield S10 2TN, UK
Boris E. Burakov
Affiliation:
Laboratory of Applied Mineralogy and Radiochemistry, V.G. Khlopin Radium Institute, St Petersburg 194021, Russia.
Get access

Abstract

Excess plutonium not destined for burning as MOX or in Generation IV reactors is both a long-term waste management problem and a security threat. Immobilisation in mineral and ceramic-based waste forms for interim safe storage and eventual disposal is a widely proposed first step. The safest and most secure form of geological disposal for Pu yet suggested is in very deep boreholes and we propose here that the key to successful combination of these immobilisation and disposal concepts is the encapsulation of the waste form in small cylinders of recrystallized granite. The underlying science is discussed and the results of high pressure and temperature experiments on zircon, depleted UO2 and Ce-doped cubic zirconia enclosed in granitic melts are presented. The outcomes of these experiments demonstrate the viability of the proposed solution and that Pu could be successfully isolated from its environment for many millions of years.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ewing, R.C., Proc. Nat. Acad. Sci. USA. 96, 3432 (1999).Google Scholar
2 Lumpkin, G.R., Elements 2, 365 (2006).Google Scholar
3 Muller, I. and Weber, W.J., Mat. Res. Soc. Bull. 26, 698 (2001).Google Scholar
4 Farnan, I., Cho, H. and Weber, W.J., Nature 445, 190 (2007).Google Scholar
5 Burakov, B.E. and Anderson, E.B., Crystalline ceramics developed for the immobilisation of actinide wastes in Russia, Proc. 8th Int. Conf. on Environmental Management ICEM'01, Bruges, Belgium (2001).Google Scholar
6 Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz, T. Rubia, de la, Hobbs, L.W., Kinoshita, C., Matzke, H., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R. and Zinkle, S.J., J. Mat. Res. 13, 1434 (1998)Google Scholar
7 Weber, W.J., Ewing, R.C. and Wang, L.M., J. Mat. Res. 9, 588 (1994).Google Scholar
8 Sickafus, K.E., Matzke, H., Hartmann, T., Yasuda, K., Valdez, J.A., Chodak, P., Nastasi, M. and Verrall, R.A., J. Nucl. Mat. 274, 66 (1999).Google Scholar
9 Burakov, B.E., Yagovkina, M., Zamoryanskaya, M., Kitsay, A.A., Garbuzov, V.M., Anderson, E.B. and Pankov, A.S., Mat. Res. Symp. Proc. 807 (2004) pp213217.Google Scholar
10 Geisler, T., Burakov, B., Yagovkina, M., Garbuzov, V., Zamoryanskaya, M., Zirlin, V. and Nicolaeva, L., J. Nucl. Mat. 336, 22 (2005).Google Scholar
11 Ewing, R.C., Nature 445, 161 (2007).Google Scholar
12 Edwards, R., New Scientist 2586, 26 (2007).Google Scholar
13 Gibb, F., Imperial Engineer (Royal School of Mines, London) 3, 11 (2005).Google Scholar
14 Gibb, F.G.F., Travis, K.P., McTaggart, N.A., Burley, D. and Hesketh, K.W., Nucl.Technology (in press).Google Scholar
15 M.I.T., , The Future of Nuclear Power: An Interdisciplinary MIT Study (Massachusetts Institute of Technology, Cambridge, 2003)Google Scholar
16 Chapman, N. and Gibb, F., Radwaste Solutions 10 (4) 2637 (2003).Google Scholar
17 CoRWM, Managing Our Radioactive Waste Safely: CoRWM's Recommendations to Government, (Committee on Radioactive Waste management, London, 2006).Google Scholar
18 M.I.T., The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems [EGS] on the United States in the 21st Century, (Massachusetts Institute of Technology, Cambridge, 2006)Google Scholar
19 Gibb, F., Geoscientist 16 (1), 1416 (2006).Google Scholar
20 Attrill, P.G. and Gibb, F.G.F., Lithos 67, 103 (2003).Google Scholar
21 Chappell, B.W. and White, A.J.R., Pacific Geology 8, 173 (1974).Google Scholar
22 Attrill, P.G. and Gibb, F.G.F., Lithos 67, 119 (2003).Google Scholar
23 Moller, P., Weise, S.M., Althaus, E., Bach, W., Behr, H.J., Borchardt, R., Brauer, K., Drescher, J., Erzinger, J., Faber, E., Hansen, B.T., Horn, E.E., Huenges, E., Kampf, H., Kessels, W., Kirsten, T., Landwehr, D., Lodemann, M., Machon, L., Pekdeger, A., Pielow, H.U., Reutel, C., Simon, K., Walther, J., Weinlich, F.H. and Zimmer, M., J. Geophys. Res. 102, 18233 (1997).Google Scholar