Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T05:34:35.613Z Has data issue: false hasContentIssue false

Deep Level Defects, Luminescence, and the Electro-Optic Properties of SiGe/Si Heterostructures

Published online by Cambridge University Press:  22 February 2011

Pallab Bhattaci-Iarya
Affiliation:
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109–2122
Shin-Hwa Li
Affiliation:
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109–2122
Jinju Lee
Affiliation:
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109–2122
Steve Smith
Affiliation:
University of Dayton Research Institute, Dayton, OH 45469–0178
Get access

Abstract

Deep levels and luminescence in SiGe/Si heterostructures and quantum wells have been investigated. We have studied the effects of Be- and B-doping on the luminescent properties of Si1−xGex/Si single and multiquantum wells. No new levels, or enhancement of luminescence, from that in undoped samples, is detected in samples which are selectively doped in the well-regions, implying that the observed luminescence in the undoped quantum wells is a result of alloy disordering. Slight enhancement of luminescence is observed in disordered wells and in quantum wires made by electron beam lithography and dry etching. Deep levels have been identified and characterized in undoped Si1-xGex alloys. Hole traps in the p-type layers have activation energies ranging from 0.029-0.45 eV and capture cross sections (σ) ranging from 10−9 to 10−20 cm2. Possible origins of these centers are discussed. Some possibilities of obtaining enhanced electro-optic coefficients in SiGe/Si heterostructures are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bean, J. C., J. Cryst. Growth 81, 411 (1987).Google Scholar
2. Weber, J. and Alonso, M. I., Phys. Rev. B, 40, 5683 (1989).Google Scholar
3. Terashima, K., Tajima, M. and Tatsumi, T., Appl. Phys. Lett., 57, 1925 (1990).Google Scholar
4. Noel, J.-P., Rowell, N. L., Houghton, D. C. and Perovic, D. D., Appl. Phys. Lett., 57, 1037 (1990).Google Scholar
5. Terashima, K., Tajima, M., Ikarashi, N., Niino, T. and Tatsumi, T., Jpn. J. Appl. Phys., 30, 3601 (1991).Google Scholar
6. Sturm, J. C., Manoharan, H., Lenchyshyn, L. C., Thewalt, M. L. W., Rowell, N. L., Noel, J.-P. and Houghton, D. C., Phys. Rev. Lett., 66, 1362 (1991).Google Scholar
7. Northrop, G. A., Wolford, D. J. and Iyer, S. S., Appl. Phys. Lett., 60, 865 (1992).Google Scholar
8. Robbins, D. J., Canham, L. T., Barnett, S. J., Pitt, A. D. and Calcott, P., J. Appl. Phys., 71, 1407 (1992).CrossRefGoogle Scholar
9. Xiao, X., Liu, C. W., Sturm, J. C., Lenchyshyn, L. C. and Thewalt, M. L. W., Appl. Phys. Lett., 60, 1720 (1992).CrossRefGoogle Scholar
10. Spitzer, J., Thonke, K., Sauer, R., Kibbel, H., Herzog, H.-J. and Kasper, E., Appl. Phys. Lett., 60, 1729 (1992).CrossRefGoogle Scholar
11. Xiao, X., Liu, C. W., Sturm, J. C., Lenchyshyn, L. C., Thewalt, M. L. W., Gregory, R. B. and Fejes, P., Appl. Phys. Lett., 60, 2135 (1992).Google Scholar
12. Vescan, L., Hartmann, A., Schmidt, K., Dieker, C., Lüth, H. and Jiger, W., Appl. Phys. Lett., 60, 2183 (1992).Google Scholar
13. Noel, J.-P., Rowell, N. L., Houghton, D. C., Wang, A. and Perovic, D. D., Appl. Phys. Lett., 61, 690 (1992).Google Scholar
14. Fukatsu, S., Yoshida, H., Fujiwara, A., Takahashi, Y., Shiraki, Y. and Ito, R., Appl. Phys. Lett., 61, 804 (1992).Google Scholar
15. Chen, Y. C., Ph.D. thesis, University of Michigan, 1992.Google Scholar
16. Lang, D. V., Logan, R. A. and Jaros, M., Phys. Rev. B 19, 1015 (1979).Google Scholar
17. Sankey, O. F. and Dow, J. D., Phys. Rev., B 26, 3243 (1982).Google Scholar
18. Mukashev, B. N., Kolodin, L. G., Nussupov, K. H., Spitsyn, A. V. and Vavilov, V. S., Radia. Eff., 46, 770 (1980).Google Scholar
19. See, for example, Holonyak, N., Nelson, R. J., Coleman, J. J., Wright, P. D., Finn, D., Groves, W. O. and Keune, D. L., J. Appl. Phys., 48, 1963 (1977), and publications therein.Google Scholar
20. Li, S. H., Hinckley, J., Singh, J. and Bhattacharya, P. K., Appl. Phys. Lett., 63, 1393 (1993).Google Scholar
21. Sasaki, A., J. Cryst. Growth, 115, 490 (1991).Google Scholar
22. Yamamota, T., Kasu, M., Noda, S. and Sasaki, A., J. Appl. Phys., 68, 5318 (1990).Google Scholar
23. Kasu, M., Yamamoto, T., Noda, S. and Sasaki, A., Jpn. J. Appl. Phys., 29, 828 (1990).Google Scholar
24. Sagnes, I. et al. , Appl. Phys. Lett., 62, 1155 (1993).Google Scholar
25. Singh, J., Appl. Phys. Lett., 59, 3142 (1991).Google Scholar